ISO TC184/SC4/* WG 5 N 213 (P3_)
*Complete with EC (for Editing), PMAG, or WG

Date: 1 December 1994 Supercedes SC4/ WG 5 N 40 (P)
PRODUCT DATA REPRESENTATION AND EXCHANGE

Part: 12 Title: EXPRESS-I Language Reference Manual

Purpose of this document as it relates to the target document is:
X Primary Content
Issue Discussion Current Status: Editorially complete

Alternate Proposal

Partial Content

ABSTRACT:

The EXPRESS-I instance language provides a means of displaying example instantiations
of EXPRESS defined elements and also provides formal support for the specification of test
cases.

KEYWORDS: Document Status/Dates (dd/mm/yy)
glilgDSETSei‘; Iélztsilsltlatlon Lan- Part Documents Other SC4 Documents
’ 2/11/92 Released Released
19/5/94 Project Working
19/5/94 Working Editorial OK
17/10/94 Technically Complete Technically
1/12/94 Editorially Complete Complete
ISO Committee Draft Approved
Owner/Editor: Peter R Wilson Alternate: Philip Spiby
Address: NIST Address: CADDETC

Bldg. 220, Room A127
Gaithersburg, MD 20899

Arndale House
Headingley

USA Leeds, LS6 2UU
United Kingdom
Telephone/FAX: +1 (301) 975-2976 Telephone/FAX: 44 532 305005
E-mail: pwilson@cme.nist.gov E-mail:

Comments to Reader

Members of WG6 have used technically the same version of EXPRESS-I to develop trial
Abstract Test Cases. The changes made in this version in preperation for CD ballot-
ing are essentially restricted to documentation updates to match the ISO 10303-11:1994
International Standard document.

revision 3, 7/93 (PRW)

ISO/CD 10303-12

NOTE: This page is given for information only. It is not part of ISO10303:Part 12.

Credits
The authors of Express-1 are:

Paul Bell

Ray Goult

Steve Clark
Andras Markus
Sabine Mullenbach
Jon Owen
Douglas Schenck
Philip Spiby
Bernd Wenzel
Peter Wilson

Meetings

San Diego, USA
Sapporo, Japan
London, UK
Dallas, USA
Davos, Switzerland

Greenville, USA

ii

CADDETC

LMR Systems

National Institute of Standards and Technology
Hungarian Academy of Sciences

Digital Equipment International GmbH
CADDETC

McDonnell Aircraft Company

CADDETC

Digital Equipment Corp.

Rensselaer Polytechnic Institute and NIST

April 1991
July 1991
July 1992
October 1992
May 1994
October 1994

ISO/CD 10303-12

Contents
Foreword e vii
Introduction e e e ix
1 Scope . o e e 1
2 Normative references e 2
3 Definitions e 2
3.1 Terms defined in ISO 10303-1 e 2
3.2 Terms defined in ISO 10303-11 s e 2
3.3 Other definitions e 3
3.3.1 Attribute e 3
3.3.2 Conceptual schema L L Lo 3
3.3.3 Informationo 3
3.3.4 Information base o 3
3.3.5 Model e 3
3.3.6 Object Base 3
3.3.7 Schema e e e e 3
3.3.8 Type . o o o e e e 3
3.3.9 Universe of discourse e 3
4 Conformance requirements e e e e e e e 3
4.1 Formal specifications written in EXPRESS-I 4
4.1.1 Levels of checking o 4
4.2 Implementations of EXPRESS-I 4
5 Fundamental Principles oL L o 4
6 Language elements L L e e 5
6.1 Character set e 5
6.1.1 Digits o e 5
6.1.2 Letters e e e e 5
6.1.3 Special characters L Lo o o 6
6.1.4 Underscore e e e e e e e 6
6.1.5 Whitespace o . o oL 6
6.1.6 Remarks 7
6.2 Reserved words 7
6.2.1 Keywords L e 8
6.2.2 Reserved words which are operators Lo 8
6.2.3 Built-in constants e 9
6.2.4 Built-in functions 9
6.2.5 Built-in procedures oL Lo 9
6.3 Symbols L e 10

ii

10

ISO/CD 10303-12

6.4 Identifiers and references o 10
Named domains e e e e e e e e e 12
7.1 Entity domain o000 12
7.2 Fnumeration domain e 12
7.3 Select domain e 12
7.4 Type domain L 13
Values and instances e 13
8.1 Base values e e 13
8.1.1 Binary value L0 L 13
8.1.2 Boolean value 14
8.1.3 Number value o 14
8.1.4 Integer value 14
8.1.5 Logical value 14
8.1.6 Real value 15
8.1.7 String value oL 15
8.1.8 Fnumeration valueo 17
8.2 Aggregation valueso oL L 17
8.3 Simple instanceo L Lo e e e 18
8.4 Typeinstance L e 18
8.5 Select instance e e 19
8.6 Enumeration instance L e 19
8.7 Entity instanceo L 20
8.7.1 Attributes L e 20
8.7.2 Supertypes and subtypes oL L Lo oL 23
8.8 Schema data instance e 23
8.9 Constant instance e 24
8.10 Model display oo 25
Test case specification oL 25
9.1 Context e 26
9.2 Parameters e e 27
9.2.1 Formal parameter o 27
9.2.2 Actual parameter L oL Lo 28
9.3 Test case e e e e e e 28
9.4 Test objective oL 29
9.4.1 Test purpose L e e e e 30
9.4.2 Test reference 30
9.4.3 Test criteria e e e e e 30
9.4.4 Test notes L e e e 31
9.5 Test realization L e e 31
Interfaces e 31
10.1 Schema instance interface 32
10.2 Schema reference e 32
10.3 Context data references 33

iii

ISO/CD 10303-12

11 Scope and visibility oL e e e 33
11.1 Scoperules oL 34
11.2 Visibility rules o oL 36

11.2.1 General rules of visibility o o oo 36
11.2.2 Named data type identifier visibility rules 36
11.3 Explicit item rules oL Lo 37
11.3.1 Alias statemento Lo 37
11.3.2 Attribute oL 37
11.3.3 Comnstant 0 oL 37
11.3.4 Constant instance L L L 39
11.3.5 Context v v v e e e e 39
11.3.6 Entity 0L 39
11.3.7 Entity instance L e e 40
11.3.8 Enumeration item L e 40
11.3.9 Enumeration instance L o 41
11.3.10 Function o o e e e e 41
11.3.11 Model . . . o o 41
11.3.12 Parameter. o . o o e e e e e 41
11.3.13 Procedure L 42
11.3.14 Query expression v v v v v v v e e e e e e e e e e e e 42
11.3.15 Repeat statement L Lo 42
11.3.16 Rule label o oo oo 42
11.3.17 Schema data instance L L o o 42
11.3.18 Select instance oL L 43
11.3.19 Simple instance oL oL 43
11.3.20 Test case o o o v i i i i e e e e e e e 43
11.3.21 Type . o v v o e e e e e e e e e e e 43
11.3.22 Typeinstance o o o v i it e e e e e e 44
11.3.23 Typelabel . . . 0 00 0 44
11.3.24 Variable o 00 o 44

12 Mapping from EXPRESS to EXPRESS-T 44

12.1 Mapping of EXPRESS schema 0., 44
12.1.1 Mapping of use and reference o oo oL 46
12.2 Mapping of EXPRESS simple data types 47
12.3 Mapping of aggregation data types L oL 48
12.4 Mapping of EXPRESS defined data type 49
12.5 Mapping of EXPRESS enumeration type 49
12.6 Mapping of EXPRESS select type o oL 49
12.6.1 Simple select caseo Lo 50
12.6.2 Complex select case L 50
12.7 Mapping of EXPRESS constant 0 o oo 51
12.8 Mapping of EXPRESS entity o o o 51
12.9 Mapping of EXPRESS entity attributes 52
12.9.1 Explicit attribute oo o 52
12.9.2 Derived and inverse attributes o 000, 53

v

ISO/CD 10303-12

12.9.3 Attribute with a simple domaino oo 53
12.9.4 Attribute with an entity domaino 000 55
12.9.5 Attribute with a type, select or enumeration domain 56
12.10 Mapping of supertypes and subtypes L oL 57
12.10.1 Mapping of redeclared attributes 000, 60
Annexes
A Syntax description of EXPRESS-To o oo 62
Al Tokens o e 62
Al Keywords L e 62
Al12 Character classes L 65
A2 Lexical elements L 66
A2.1 Remarks oL 66
A3 Interpreted identifierso L 67
A4 Grammarrules Lo 67
A5 Cross reference listing L Lo 74
B Protocol implementation conformance statement (PICS) 85
B.1 EXPRESS-I language parser L o e 85
C Information object registration L L o 86
D Language specification syntax L L o 87
D.1 The syntax of the specification o 0. 87
D.2 Special character notation Lo L oo 88
E Example test cases L Lo e 90
E.1 Test case 1 o o e e e e e e 90
E.2 Test case 2 L e e e e 92
E.3 Test case 3 e e e 93
E.4 Test case 4 L e e e e 94
F o Usagenotes o 0 o e e e 97
F.1 EXPRESS dataexamples o o 97
F.2 Abstract test caseso 97
F.3 Object bases e 98
F.3.1 Input o 98
F.3.2 Output o 98
F.3.3 Code testing o e 98
F.4 Non-EXPRESS data examples L o oo 99
G Bibliography o e 100
Index . . . o 101
Figures
1 The major elements of the EXPRESS-I language. xi

ISO/CD 10303-12

Tables

1 Keywords common to EXPRESS-T and EXPRESS. 8
2 Additional EXPRESS-Tkeywords e 8
3 The EXPRESS-T use of EXPRESS operators. v v v .. 9
4 The EXPRESS-T use of EXPRESS constants. 9
5 The EXPRESS-T use of EXPRESS functions. 9
6 The EXPRESS-T use of EXPRESS procedures. 10
7 Symbols common to EXPRESS-T and EXPRESS. 10
8 Additional EXPRESS-Tsymbols. e 10
9 Scope and identifier defining EXPRESS-Iitems 34
10 Scope and identifier defining EXPRESS items utilised by EXPRESS-I. 35
11 Scope and visibility rules. o 38
12 Summary overview of EXPRESS to EXPRESS-I mappings. « 45
13 Overview of SCHEMA mapping. o vt vttt it e e 45
14 Simple type mapping. Lo e e e e e e 47
15 Mapping of AGGREGATES. o vt vt it it e e ettt e e e e 48
16 Overview of ENTITY mapping. o o v v vt vttt e e e e 52
17 Overview of SUPERTYPE and SUBTYPE mMapping. « o« v v v v v v v v v v v o 57

vi

ISO/CD 10303-12

Foreword

The International Organization for Standardization (ISO) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is nor-
mally carried out through ISO technical committees. Each member body interested in a subject
for which a technical committee has been established has the right to be represented on that
committee. International organizations, governmental and non-governmental, in liaison with
IS0, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

Draft International Standards adopted by technical committees are circulated to the member
bodies for voting. Publication as an International Standard requires approval by at least 75%
of the member bodies casting a vote.

International Standard ISO 10303-12 was prepared by Technical Committee ISO/TC 184, In-
dustrial automation systems and integration, Subcommittee SC4, Industrial data and global
manufacturing programming languages.

This part of ISO 10303 is based in part upon material in:

— 150 6937: Information Processing — Coded character sets for text communication.

— ISO TR 9007: Information Processing Systems — Concepts and terminology for the
conceptual schema and the information base.

— IS0 10303-11: Product Data Representation and Exchange — Description methods:
The EXPRIESS language reference manual.

ISO 10303 consists of the following parts under the general title Industrial automation systems
and integration — Product data representation and exchange:

— Part 1, Overview and fundamental principles;

— Part 11, Description methods: The EXPRESS language reference manual;

— Part 12, Description methods: The EXPRESS-T language reference manual;

— Part 21, Implementation methods: Clear text encoding of the exchange structure;
— Part 22, Implementation methods: Standard data access interface specification;

— Part 31, Conformance testing methodology and framework: General concepts;

— Part 32, Conformance testing methodology and framework: Requirements on testing
laboratories and clients;

— Part 41, Integrated generic resources: Fundamentals of product description and support;

— Part 42, Integrated generic resources: Geometric and topological structures;

vii

ISO/CD 10303-12

— Part 43, Integrated generic resources: Representation structures;

— Part 44, Integrated generic resources: Product structure configuration;
— Part 45, Integrated generic resources: Materials;

— Part 46, Integrated generic resources: Visual presentation;

— Part 47, Integrated generic resources: Shape variation tolerances;

— Part 49, Integrated generic resources: Process structure and properties;
— Part 101, Integrated application resources: Draughting;

— Part 104, Integrated application resources: Finite element analysis;

— Part 105, Integrated application resources: Kinematics;

— Part 201, Application protocol: Explicit draughting;

— Part 202, Application protocol: Associative draughting;

— Part 203, Application protocol: Configuration controled design;

— Part 207, Application protocol: Sheet metal die planning and assembly;
— Part 210, Application protocol: Printed circuit assembly product design data;

— Part 213, Application protocol: Numerical control process plans for machined parts.

The structure of this International Standard is described in ISO 10303-1. The numbering of the
parts of this International Standard reflects its structure:

— Parts 11 and 12 specify the description methods;

— Parts 21 and 22 specify the implementation methods;

— Parts 31 and 32 specify the conformance testing methodology and framework;
— Parts 41 to 49 specify the integrated generic resources;

— Parts 101 to 105 specify the integrated application resources;

— Parts 201 to 213 specify the application protocols.
Should further parts be published, they will follow the same numbering pattern.

Annexes A, B and C are an integral part of this part of ISO 10303. Annexes D, E, I and G are
for information only.

viii

ISO/CD 10303-12

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and ex-
change of product data. The objective is to provide a neutral mechanism capable of describing
product data throughout the life cycle of a product independent from any particular system.
The nature of this description makes it suitable not only for neutral file exchange, but also as a
basis for implementing and sharing product databases and archiving.

This International Standard is organized as a series of parts, each published separately. The
parts of ISO 10303 fall into one of the following series: description methods, integrated resources,
application protocols, abstract test suites, implementation methods, and conformance testing.
The series are described in ISO 10303-1. This part of ISO 10303 is a member of the descriptive
methods series.

This part of ISO 10303 specifies the elements of the EXPRESS-T language. Fach element of the
language is presented in its own context with examples. Simple elements are introduced first,
then more complex ideas are presented in an incremental manner.

Language Overview

EXPRESS-T is the name of a formal data representation and abstract test case specification
language. It may be used to exemplify the information requirements of other parts of this
International Standard and is a companion to the EXPRESS and EXPRESS-G languages. It is
based on a number of design goals among which are:

— The size and complexity of ISO 10303 demands that the language be parsable by both
computers and humans. Expressing elements of ISO 10303 in a less formal manner would
eliminate the possibility of employing computer automation in checking for inconsistencies
in presentation or specification.

— The language focuses on the display of the realisation of the properties of entities, which
represent objects of interest. The definition of an entity is in terms of its properties, which
are charcterized by specification of a domain and the constraints on that domain.

— The language seeks to avoid, as far as possible, specific implementation views.
— Provision of a means of displaying small populated models of EXPRESS schemas.

— Provision of a means of supporting the specification of test suites for information model
processors.

In EXPRESS-I, entity instances are represented in terms of attribute values: the traits or charac-
teristics considered important for use and understanding. These attributes have a representation
which might be a simple data type (such as integer) or another entity type. A geometric point
might be defined in terms of three real numbers. Names are given to the attributes which con-
tribute to the definition of an entity. Thus, for a geometric point the three real numbers might
be named x, y and z. A relationship is established between the entity being defined and the

X

ISO/CD 10303-12

attributes that define it, and in a similar manner between the attribute and its representation.

The EXPRESS-I instance language provides a means of displaying instantiations of EXPRESS
data elements. The language is designed principally for human readability and for ease of
generating EXPRESS-I element instances from definitions in an EXPRESS schema. FElsewhere
in this International Standard, for example ISO 10303-21, there are specifications for computer
efficient methods for instantiating a schema. EXPRESS-T is not intended to be a replacement for
such methods.

The major elements of the language are shown in figure 1.

The language has two major parts. The first part is for the display of data instances. Data
may be displayed on an entity by entity basis, on a schema basis or as a collection of schema
instances which are taken to be a display of some model of a universe of discourse. Within the
EXPRESS-T language these are called object instances, schema instances and a model. In figure
1 the model is assumed to have been defined using EXPRESS.

The second part of the language is for the specification of Abstract Test Cases for the purposes
of formally describing tests to be performed against an implementation of an EXPRESS defined
information model. The language constructs provided for this purpose are the test case and
the context. This portion of the language also utilises the procedural aspects of the EXPRESS
language. Instances of data may be parameterised and stored in a context. Many different test
cases may assign values for the parameterised data in a context and use that data as part of
their test specification.

The data instances resulting from the application of a test case may be displayed via the model
portion of the language.

NOTE — The examples of EXPRESS-I usage in this manual do not conform to any particular style
rules. Indeed, the examples sometimes use poor style to conserve space or to show flexibility. The
examples are not intended to reflect the content of the information models defined in other parts
of this International Standard. They are crafted to show particular features of EXPRESS-I. Any
similarity between the examples and the normative information models or test cases specified in

other parts of ISO 10303 should be ignored.

ISO/CD 10303-12

Display MODEL
.data Schema instances
mstances -
> Type instances
Entity instances
A
Display
result
Instances
EXDPRESS TEST CASE

>

» Declarations under test

Schema declarations Objective specification

Type declaratl(?ns Realisation

Entity declarations

Rule declarations Context data import
Algorithm declarations Data assignments

Algorithm declarations

Import
data

CONTEXT

Formal parameters

Schema instances

(parameterised; (parameterised) Type instances
Data (parameterised) Entity instances
instances

Algorithm declarations

Figure 1 — The major elements of the EXPRESS-T language.

xi

ISO/CD 10303-12

Industrial automation systems and integration —
Product data representation and exchange —

Part 12 :
Description methods: The EXPRESS-I language

reference manual

1 Scope

This part of ISO 10303 defines a language by which an instance of (part of) a universe of discourse
can be displayed. It also provides a formal description method for supporting the specification of
abstract test cases. The language is called EXPRESS-I. It is a companion language to EXPRESS
which is specified in ISO 10303-11.

EXPRESS-T is a an instantiation language for a conceptual schema language as defined in ISO
TR 9007 and the particular conceptual schema language that formed the starting point for EX-
PRESS-T was EXPRESS. That is, it provides for the display of the state of the objects belonging
to a universe of discourse and the information units pertaining to those objects.

The following are within the scope:

— display of instances of schemas;

display of instances of types and entities;

test case data;

— mapping from EXPRESS schemas and data types to EXPRESS-T instances.
The following are outside the scope of this part of ISO 10303:
— mapping from other (conceptual schema) languages to EXPRESS-I;

— definition of database formats;
— definition of file formats;

— definition of transfer formats;
— process control;

— information processing;

— exception handling.

EXPRESS-T is not a programming language.

ISO/CD 10303-12

2 Normative references

The following standards contain provisions which, through reference in this text, constitute
provisions of this part of ISO 10303. At the time of publication, the editions indicated were
valid. All standards are subject to revision, and parties to agreements based on this part of
ISO 10303 are encouraged to investigate the possibility of applying the most recent editions of
the standards indicated below. Members of IEC and ISO maintain registers of currently valid
International Standards.

ISO/IEC 8824-1:—1) | Information technology — Open systems interconnection — Abstract syn-
tax notation one (ASN.1) — Part 1: Specification of basic notation.

1SO 10303-1:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 1: Quverview and fundamental principles.

1SO 10303-11:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 11: Description methods: The EXPRESS language reference manual.

ISO/TEC 10646-1:1993, Information technology — Universal multiple-octet coded character set
(UCS) — Part 1: Architecture and basic multilingual plane.

3 Definitions

3.1 Terms defined in ISO 10303-1

This part of ISO 10303 makes use of the following terms defined in ISO 10303-1:
— Data;

— Information model.

3.2 Terms defined in ISO 10303-11

This part of ISO 10303 makes use of the following terms defined in ISO 10303-11:
— Complex entity data type;

— Complex entity instance;
— Constant;

— Data type;

1)To be published.

ISO/CD 10303-12

— Entity;

— Entity instance;

— Instance;

— Object;

— Population;

— Property;

— Simple entity instance;

— Subtype/supertype graph;

— Token.

3.3 Other definitions

For the purposes of this part of ISO 10303, the following definitions apply:

3.3.1 Attribute: A trait, quality or property that is a characteristic of an entity.
3.3.2 Conceptual schema: A schema that is not configured for a specific implementation.
3.3.3 Information: Knowledge of facts, processes or ideas.

3.3.4 Information base: A collection of type instances, consistent with each other and with
a conceptual schema, that hold for an instance of a universe of discourse.

3.3.5 Model: A formal description of a universe of discourse.

3.3.6 Object Base: An information base that is computer processible.

3.3.7 Schema: A collection of items forming part or all of a model.

3.3.8 Type: A representation of a domain of valid values.

3.3.9 Universe of discourse: All those real world objects that are of potential interest. These

are a subset of all the real world objects.

4 Conformance requirements

ISO/CD 10303-12

4.1 Formal specifications written in EXPRESS-I

A formal specification written in EXPRESS-I shall be consistent with a given level as specified
below. A formal specification is consistent with a given level when all checks identified for that
level and all lower levels are verified for the specification.

4.1.1 Levels of checking

Level 1: Reference checking. This level consists of checking the formal specification to
ensure that it is syntactically and referentially valid. A formal specification is syntactically
valid if it matches the syntax generated by expanding the primary syntax rule given in
annex A. A formal specification is referentially valid if all references to EXPRESS-T items are
consistent with the scope and visibility rules defined in clause 11.

Level 2: Type checking. This level consists of checking the formal specification to ensure
that type compatability in expressions and assignments, as defined for level 2 checking in
ISO 10303-11, are valid.

Level 3: Value checking. This level consists of checking the formal specification to ensure
that it compies with level 3 checking defined in ISO 10303-11.

Level 4: Complete checking. This level consists of checking a formal specification to ensure
that it complies with all statements of requirements as specified in this part of ISO 10303.

4.2 Implementations of EXPRESS-I

An implementation of an EXPRESS-T language parser shall be able to parse any formal specifi-
cation written in EXPRESS-I, consistent with the constraints as specified in annex B associated
with that implementation. An EXPRESS-I language parser shall be said to conform to a partic-
ular checking level (as defined in 4.1.1) if it can apply all checks required by the level (and any
level below that) to a formal specification written in EXPRESS-L.

The implementor of an EXPRESS-I language parser shall state any constraints which the imple-
mentation imposes on the number and length of identifiers, on the range of processed numbers,
and on the maximum precision of real numbers. Such constraints shall be documented in the
form specified by annex B for the purposes of conformance testing.

5 Fundamental Principles

It is assumed that the reader of this document is familiar with the EXPRESS language as specified
in ISO 10303-11.

It is assumed that when EXPRESS-T is used to display entity instances that there is elsewhere
a related set of entity definitions. It is further assumed that these will typically be described
using the EXPRESS language.

ISO/CD 10303-12

6 Language elements

This clause specifies the basic elements from which sentences in the EXPRESS-I language are
composed: the character set, remarks, symbols, reserved words, identifiers, literals and values.

The boxed syntax definitions in the body of this document are excerpts from the EXPRESS-I
language syntax in annex A which defines the complete syntax of the language and provides any

language productions not given here. The method of specifying the syntax is a superset of that
used for EXPRESS as defined in clause 6 of ISO 10303-11.

NOTE 1 - For convenience of the reader, the EXPRESS method is repeated in annex D, together
with the extensions for EXPRESS-I.

The basic language elements are composed into a stream of source text, typically broken into
physical lines. A physical line is any number (including zero) of characters ended by a newline
(see 6.1.5.2).

NOTE 2 - EXPRESS-Isource is easier to read when statements are broken into lines and whitespace
is used to set off different constructs.

6.1 Character set

EXPRESS-T source shall only use the characters defined by the following selected subset of
ISO 10646; cells 00 to 7F of row 00 of plane 00 of group 00. This selected subset of ISO 10646 is
called the EXPRESS-T character set. Members of this set are referred to by the cell of ISO 10646
in which these characters are defined, these cell numbers are specified in hexadecimal. The
printable characters from this subset (cells 21-7E) are combined to form the tokens for the EX-
PRESS-T language. The EXPRESS-T tokens are keywords, identifiers, symbols, literals or values.
The EXPRESS-I character set is further classified below:

NOTES
1 — The EXPRESS-I character set is the same as the EXPRESS character set.

2 — This clause only refers to the characters used to specify EXPRESS-I source, and does not specify
the domain of characters allowed within a string value.

6.1.1 Digits

EXPRESS-I uses the Arabic digits 0-9 (cells 30-39 of the EXPRESS-I character set).

Syntax:

120 digit = < as EXPRESS > .

6.1.2 Letters

EXPRESS-I uses the upper and lower case letters of the English alphabet (cells 41-5A and 61-7TA

ISO/CD 10303-12

of the EXPRESS-I character set). The case of letters is significant only within explicit string
values.

NOTE - EXPRESS-I may be written using upper, lower or mixed case letters.

Syntax:

124 letter = < as EXPRESS > .

6.1.3 Special characters

The special characters (printable characters which are neither letters nor digits) are used mainly
for punctuation and as operators. Some of the special characters shown are not used as part
of the language. They may be used within remarks and string values, however. These special
characters are in cells 21-2F, 3A-3F, 40, 5B-5E, 60 and 7B-7E of the EXPRESS-I character set.

Syntax:

134 special = < as EXPRESS > .

6.1.4 Underscore

The underscore character (_, cell 5F of the EXPRESS-I character set) may be used in identifiers
and keywords, with the exception that the underscore character shall not be used as the first
character.

6.1.5 Whitespace

Whitespace is defined by the following sub-clauses and by 6.1.6. Whitespace shall be used to
separate the tokens in EXPRESS-T source.

NOTE — Liberal, and consistent, use of whitespace can improve the structure and readability of

EXPRESS-I source.

6.1.5.1 Space character

One or more spaces (cell 20 of the EXPRESS-I character set) can appear between two tokens or
within a string value. The notation \s is used to represent the space character in the syntax of
the language.

6.1.5.2 Newline

A newline marks the physical end of a line within a formal specification written in EXPRESS-I.
Newline is normally treated as a space but is significant when it terminates a tail remark or
appears within a string value. A newline is represented by the notation \n in the syntax of the
language.

The representation of a newline is implementation defined.

ISO/CD 10303-12

6.1.5.3 Other characters
Characters not defined in clause 6.1.1 to clause 6.1.5.2 (i.e., cells 00-1F and 7F of the EXPRESS-I

character set) shall be treated as whitespace, unless within a string value. The notation \o is
used to represent any of these other characters in the syntax of the language.

6.1.6 Remarks

A remark is used for documentation and shall be interpreted by an EXPRESS-I parser as whites-
pace. There are two forms of remark: embedded remark and tail remark.

6.1.6.1 Embedded remark

The character pair (* denotes the start of an embedded remark and the character pair *) denotes
its end. An embedded remark may appear between any two tokens.

Syntax:

142 embedded_remark = < as EXPRESS > .

Any character within the EXPRESS-T character set may occur between the start and end of
an embedded remark, including the newline character; therefore embedded remarks can span
several physical lines.

Embedded remarks may be nested.

NOTE — Care must be taken when nesting remarks to ensure that there are matched pairs of
symbols.

EXAMPLE 1 — The following is an example of embedded nested remarks.

(* The ’(*’ symbol starts an embedded remark, and the ’*)’ symbol ends it. *)

6.1.6.2 Tail remark

The tail remark is written at the end of a physical line. Two consecutive hyphens (--) start the
tail remark and the following newline terminates it.

Syntax:

144 tajil_remark = < as EXPRESS > .

EXAMPLE 2 — A tail remark

-- This is a tail remark and is ended by a newline

6.2 Reserved words

The reserved words of EXPRESS-T are the keywords and the names of built-in constants, functions
and procedures. The reserved words shall not be used as identifiers. The reserved words of EX-

ISO/CD 10303-12

PRESS-T are described below.

6.2.1

EXPRESS-T uses a subset of the EXPRESS keywords, together with some additional ones.
Table 1 lists the keywords that are common to both EXPRESS-T and EXPRESS. Table 2 lists the

Keywords

additional EXPRESS-I keywords.

NOTE - Keywords have an uppercase production which represents the literal. This is to enable

easier reading of the syntax productions.

Table 1 — Keywords common to EXPRESS-T and EXPRESS.

ABSTRACT AGGREGATE ALIAS ARRAY
BAG BEGIN BINARY BOOLEAN
BY CASE CONSTANT CONTEXT
DERIVE ELSE END END_ALIAS
END_CASE END_CONSTANT END_CONTEXT END_ENTITY
END_FUNCTION END_IF END_LOCAL END_MODEL
END_PROCEDURE ~ END_REPEAT END_TYPE ENTITY
ENUMERATION ESCAPE FIXED FOR
FUNCTION GENERIC P INTEGER
INVERSE LIST LOCAL LOGICAL
MODEL NUMBER OF ONEOF
OPTIONAL OTHERWISE PROCEDURE QUERY
REAL REPEAT RETURN SELECT
SET SKIP STRING SUBTYPE
SUPERTYPE THEN TO TYPE
UNIQUE UNTIL VAR WHERE
WHILE

Table 2 — Additional EXPRESS-I keywords
CALL CRITERIA END_CALL END_CRITERIA
END_NOTES END_OBJECTIVE END_PARAMETER END_PURPOSE

END_REALIZATION

END_REFERENCES

END_SCHEMA _DATA

END_TEST_CASE

IMPORT NOTES OBJECTIVE PARAMETER
PURPOSE REALIZATION REFERENCES SCHEMA _DATA
SUBOF SUPOF TEST_CASE USING

WITH

6.2.2 Reserved words which are operators

The operators defined by reserved words are shown in table 3. These are the same as the

EXPRESS operators and are defined in clause 12 of ISO 10303-11.

ISO/CD 10303-12

Table 3 — The EXPRESS-I use of EXPRESS operators.

AND ANDOR DIV IN
LIKE MOD NOT OR
XOR

6.2.3 Built-in constants

Syntax:

48i Constant = LogicalValue | MathConstant | Nil .
841 LogicalValue = logical_literal .

242 logical_literal = < as EXPRESS > .

841 MathConstant = CONST_E | PI .

30i Nil = 7’

The names of the EXPRESS-I built-in constants are given in table 4. These are the same as the
EXPRESS constants and are defined in clause 14 of ISO 10303-11.

Table 4 — The EXPRESS-I use of EXPRESS constants.

7 CONST_E FALSE PI
SELF TRUE UNKNOWN

The question mark character (?) represents the notion of a Nil, or unspecified, value.

6.2.4 Built-in functions

The names of the EXPRESS functions that may be used within EXPRFESS-I are given in table 5.

Table 5 — The EXPRESS-T use of EXPRESS functions.

ABS ACOS ASIN ATAN
BLENGTH cos EXISTS EXP
FORMAT HIBOUND HIINDEX LENGTH
LOBOUND LOG LoG10 LOG2
LOINDEX NVL oDD ROLESOF
SIN SIZEOF SQRT TAN
TYPEOF USEDIN VALUE VALUE_IN
VALUE _UNIQUE

The definitions of these functions are given in clause 15 of ISO 10303-11.

6.2.5 Built-in procedures

The names of the EXPRESS procedures that may be used within EXPRESS-T are given in table
6. The procedures are defined in clause 16 of ISO 10303-11.

ISO/CD 10303-12

Table 6 — The EXPRESS-T use of EXPRESS procedures.

| INSERT REMOVE

6.3 Symbols

Symbols are special characters or groups of special characters which have a special meaning
in EXPRESS-I. Symbols are used in EXPRESS-I as delimeters and operators. A delimeter is
used to begin, seperate or terminate adjacent lexical or syntactic elements. Interpretation of
these elements would be impossible without separators. Operators denote that actions shall be
performed on the operands which are associated with the operator. The EXPRESS-I symbols
are shown in table 7 and table 8.

Table 7 — Symbols common to EXPRESS-T and EXPRESS.

* + - =
h ’ \ /
< > L]
{ b | e
() <= <>
>= <k = I
*k -- (% *)
1= 1<

Table 8 — Additional EXPRESS-I symbols.

! -> <-

n &

6.4 Identifiers and references

Identifiers are names given to the elements declared in an EXPRESS-I instantiation. An identifier
shall not be the same as an EXPRESS-T or EXPRESS reserved word.

10

ISO/CD 10303-12

Syntax:

187 constant_id = < as EXPRESS >

146 constant_ref = < as EXPRESS >

198 entity_id = < as EXPRESS > .

282 schema_id = < as EXPRESS > .

140 simple_id = < as EXPRESS > .

154 type_ref = < as EXPRESS >

541 ContextId = simple_id .

361 ContextRef = ContextId .

641 EntityInstanceld = simple_id .

361 EntityInstanceRef = '@’ EntityInstanceld .

681 EnumerationId = type_ref .

641 EnumerationInstanceld = simple_id .

371 EnumerationInstanceRef = ’@’ EnumerationInstanceld .

871 Modelld = simple_id .

91i ObjectInstanceRef = EntityInstanceRef | EnumerationInstanceRef |
SelectInstanceRef | SimpleInstanceRef |
TypeInstanceRef .

951 ParameterId = simple_id .

381 ParameterRef = ParameterId .

1101 SelectId = type_ref .

1121 SelectInstanceld = simple_id .

391 SelectInstanceRef = ’Q@’ SelectInstanceld .

1161 SimpleInstanceld = simple_id .

401 SimpleInstanceRef = ’@’ SimpleInstanceld .

1221 TestCaseld = simple_id .

1291 Typeld = type_ref .

1311 TypeInstanceld = simple_id .

411 TypeInstanceRef = '@’ Typelnstanceld .

The first character of a simple identifier shall be a letter. The remaining characters, if any, may
be any combination of letters, digits and the underscore character. Identifiers shall not have any
embedded white space.

The implementor of an EXPRESS-T language parser shall specify the maximum number of char-
acters of an identifier which can be read by that implementation, using annex B.

NOTE — The letters used to form identifiers are not case sensitive as upper and lower case letters
are treated as equal.

EXAMPLE 3 — Valid simple identifiers

POINT 1line Circle AnEntity itemb567 An_integer
EXAMPLE 4 — Invalid simple identifiers

_POINT underscore can’t be first character
line? ? can’t be part of identifier
3dThing digit can’t be first character

Pi Pi is an EXPRESS-I keyword

An element may be referenced via its identifier. Constant, parameter, and model elements are
referenced via the corresponding identifier.

11

ISO/CD 10303-12

The first character of an entity, enumeration, type or select instance reference shall be @ followed
by at least one character. The characters after the intial @ can be any combination of letters,
digits, and the underscore character which form a valid entity, enumeration, select or type
instance identifier. Collectively, these are termed object instance references.

EXAMPLE 5 - Valid object instance references

OPOINT @line 0Circle O©AnEntity @itemb67

EXAMPLE 6 — Invalid object instance references

©line? ? can’t be part of identifier

3dThing @ must be first character

@subof subof is an EXPRESS-I keyword

©eCircle © must appear only as the first character

@567 characters following the @ must begin with a letter

7 Named domains

This clause defines the domain types provided as part of the language. Domains are used to
delineate the allowable instance values. A named domain is an entity, a type, an enumeration,
or a select domain.

7.1 Entity domain

An entity domain represents a class of objects which have common attributes.

Syntax:

61i EntityDomain = [SchemaId ’.’] EntityId .

NOTE - An entity domain corresponds to an EXPRESS ENTITY data type.

7.2 Enumeration domain

An enumeration domain has as its domain an ordered set of names.

Syntax:

671 EnumerationDomain = [SchemalId ’.’] EnumerationId .

NOTE - An enumeration domain corresponds to an EXPRESS ENUMERATION data type.

7.3 Select domain

A select domain has as its domain a union of domains.

12

ISO/CD 10303-12

Syntax:

1091 SelectDomain = [SchemalId ’.’] SelectId .

NOTE - A select domain corresponds to an EXPRESS SELECT data type.

7.4 Type domain

A type domain is an extension to the other domains in the language.

Syntax:

1281 TypeDomain = [SchemaId ’.’] Typeld .

NOTE - A type domain corresponds to an EXPRESS defined data TYPE which is neither an
ENUMERATION nor a SELECT.

8 Values and instances

The clause describes the EXPRESS-T instantiation capabilities.

8.1 Base values

Syntax:

451 BaseValue = SimpleValue | EnumerationValue .
117i SimpleValue = BinaryValue | BooleanValue | LogicalValue |
NumberValue | StringValue .

A simple value is a self defining constant value. The domain of the value depends on how
characters are composed to form a token.

8.1.1 Binary value

A binary value represents the value of a binary domain.

Syntax:

261 BinaryValue = binary_literal .
136 ©binary_literal = < as EXPRESS > .

A binary value is composed of the % character followed by one or more bits (0 or 1).

The implementor of an EXPRESS-T language parser shall specify the maximum number of bits
in a binary value which can be read by that implementation, using annex B.

EXAMPLE 7 — A valid binary value

13

ISO/CD 10303-12

%10100110000101

8.1.2 Boolean value

A boolean value represents the value of a boolean domain.

Syntax:

471 BooleanValue = TRUE | FALSE .

A boolean value is one of the built-in constants FALSE or TRUE.

8.1.3 Number value

A number value is either an integer value or a real value.

Syntax:

891 NumberValue = IntegerValue | RealValue .

8.1.4 Integer value

An integer value represents the value of an integer domain.

Syntax:

29i IntegerValue = [sign] integer_literal .
138 integer_literal = < as EXPRESS > .
286 sign = < as EXPRESS > .

An integer literal is composed entirely of digits. An integer value is composed of an integer
literal, optionally preceeded by a sign. It defines a positive, negative or zero integer (whole)
number.

The implementor of an EXPRESS-T language parser shall specify the maximum value of an integer
value which can be read by that implementation, using annex B.

EXAMPLE 8 — Valid integer values

0 1 -1 891562934527619
EXAMPLE 9 — Invalid integer values

1.0 can’t include a decimal point

8.1.5 Logical value

A logical value represents the value of a logical domain.

14

ISO/CD 10303-12

Syntax:

831 LogicalValue = logical_literal .
242 logical_literal = < as EXPRESS > .

A logical value is one of the built-in constants FALSE, TRUE or UNKNOWN.

8.1.6 Real value

A real value represents the value of a real domain.

A real value is either a signed math constant or a signed real literal.

Syntax:

99i RealValue = SignedMathConstant | SignedRealliteral .
31i SignedMathConstant = [sign] MathConstant .

841 MathConstant = CONST_E | PI .

32i SignedRealliteral = [sign] real_literal .

139 real_literal = < as EXPRESS > .

A signed math constant is one of the built-in mathematical constants (i.e e or 7) optionally
preceeded by a sign.

The mathematical constant e = 2.7182 ... is represented by the EXPRESS-T constant CONST_E.
The mathematical constant 7 = 3.1415. .. is represented by the EXPRESS-T constant PI.
EXAMPLE 10 - Signed math constants

-const_e Pi

A signed real literal is composed of a (signed) mantissa and an optional exponent. It defines a
rational number.

The implementor of an EXPRESS-T language parser shall specify the maximum precision and
maximum exponent of a real value which can be read by that implementation, using annex B.

EXAMPLE 11 — Valid real values

0.0 -1.E6 1.e-6 8915629.34527619
EXAMPLE 12 — Invalid real values

.001 must have at least one digit before the point
lel0 must have a decimal point in the mantissa
1.0e-12.0 can’t have a decimal point in the exponent
CONSTE mispelled built in constant

8.1.7 String value

A string value represents the value of a string domain. There are two forms of string value,
the explicit string value and encoded string value. An explicit string value is composed of a

15

ISO/CD 10303-12

sequence of characters in the EXPRESS-I character set enclosed by quote marks (?). A quote
mark within an explicit string value is represented by two consecutive quote marks. An encoded

string value is a four octet encoded representation of a sequence of characters in ISO 10646

enclosed in double quote marks ("). The encoding is defined as follows:

— first octet = ISO 10646 group in which the character is defined;
— second octect = ISO 10646 plane in which the character is defined;
— third octect = ISO 10646 row in which the character is defined;

— fourth octect = ISO 10646 cell in which the character is defined.

Syntax:

118i StringValue = SimpleStringValue | EncodedStringValue .

331 SimpleStringValue = \q { (\q \q) | not_quote | \s | \o | \n } \q .

130 not_quote = < as EXPRESS > .

271 EncodedStringValue = ’"’ { encoded_character | \n } ’'’

122 encoded_character = < as EXPRESS > .

The implementor of an EXPRESS-T language parser shall specify the maximum number of char-

acters of a string value which can be read by that implementation, using annex B.

The

implementor of an EXPRESS-I language parser shall also specify the maximum number

of octets (must be a multiple of four) of an encoded string value which can be read by that

implementation, using annex B.

16

NOTE — An EXPRESS-Istring value differs from an EXPRESS string literal, as in the former case
a string value may span more than one physical line, whereas an EXPRESS string literal cannot
span more than one physical line.

EXAMPLE 13 — Valid explicit string values
’This is a string on one line.’
’This

is
a

multiline
string.’

’This string’’s got a single quote mark embedded in it.’

Reads ... This string’s got a single quote mark embedded in it.
EXAMPLE 14 — Invalid explicit string values

’This string is invalid because there is no closing quote mark.

EXAMPLE 15 — Valid encoded string values

""00000041"

ISO/CD 10303-12

Reads ... A.
"000000ChE"
Reads ... A

EXAMPLE 16 — Invalid encoded string values
'"'000041"

Octets must be supplied in groups of four
'"00000041 000000C5"

Can’t have a space between octets

8.1.8 Enumeration value

An enumeration value represents a value of an enumeration domain.

Syntax:

281 EnumerationValue = ’!’ simple_id .

An enumeration value is a simple identifier prepended with an exclamation mark (!). A simple
identifier is a character sequence of letters, digits and underscore, with the first character being
a letter.

EXAMPLE 17 — Valid enumeration values

'red !green !forward

8.2 Aggregation values

EXPRESS-T distinguishes two forms of aggregation of values — fixed and dynamic. A fixed
aggregation is an aggregation of like things, where the number of items in the aggregation is
constant. A dynamic aggregation is an aggregation of like things, where the number of items in
the aggregation may be variable. Aggregation values may be nested.

Syntax:

43i AggregationValue = DynamicAggr | FixedAggr .

571 DynamicAggr = ’(’ [DynamicList] ’)°

59i DynamicList = DynamicMember { ’,’ DynamicMember } .

601 DynamicMember = AggregationValue | ConstantValue |
DerattValue | ParmValue | ReqattValue |

TypeValue .
741 FixedAggr = ’[’ FixedList ']’
751 FixedList = FixedMember { ’,’ FixedMember } .

76i FixedMember = DynamicMember | Nil .

17

ISO/CD 10303-12

The allowable domains of the elements within the aggregation depend on the domain context.
These contexts are:

— Constants (see clause 8.9);

— Derived attributes (see clause 8.7.1.2);
— Explicit attributes (see clause 8.7.1.1);
— Parameters (see clause 9.2.2);

— Defined data types (see clause 8.4).

Rules and restrictions:

a) Elements within a dynamic aggregation shall not be Nil.
b) Elements within a fixed aggregation may be Nil.

¢) The element values within an aggregation shall be compatible with the aggregation
domain.

EXAMPLE 18 — Aggregation values

(10,-10,0) a dynamic aggregation of 3 integer values

(1,1,2,2,3,3) a dynamic aggregation of 6 integer values

O an empty dynamic aggregation

[1,2,3,4] a fixed aggregation of 4 integer values

([1,21,03,7) a dynamic aggregation of a fixed aggregation of 2 values

8.3 Simple instance

A simple instance is a representation of the value of one instance of a simple value.

Syntax:

1151 SimpleInstance = SimpleInstanceIld ’=’ SimpleValue ’;’

1161 SimpleInstanceld = simple_id .

117i SimpleValue = BinaryValue | BooleanValue | LogicalValue |
NumberValue | StringValue .

401 SimpleInstanceRef = ’@’ SimpleInstanceld .

EXAMPLE 19 — Some simple instances

rli = 27.0;
s1 ’A string’;

8.4 Type instance

A type instance is a representation of the value of one instance of a TYPE domain.

18

ISO/CD 10303-12

Syntax:

1301 TypeInstance = TypeInstanceld ’=’ TypeInstanceValue ’;’

1311 TypeInstanceld = simple_id .

132i TypelnstanceValue = TypeDomain ’{’ TypeValue ’}’

133i TypeValue = AggregationValue | BaseValue | ConstantRef |
EntityInstanceValue | NamedInstanceValue |
ObjectInstanceRef | ParameterRef .

411 TypeInstanceRef = '@’ Typelnstanceld .

Rules and restrictions:

a) The value of the instance shall be either a simple value, an entity instance reference,
a type instance reference, or aggregations of these.

EXAMPLE 20 — Some type instances

t1 = a_real{27.0};
t2 = an_array_of_string{[’one’, ’two’l};
t3 = a_dynamic_aggregate_of_integer{(1,1,2,3,5,8,13)};

8.5 Select instance

A select instance is a representation of the value of one instance of a SELECT domain.

Syntax:

111i SelectInstance = SelectInstanceld ’=’ SelectInstanceValue ’;’

1121 SelectInstanceld = simple_id .

113i SelectInstanceValue = SelectDomain ’{’ SelectValue '}’

114i SelectValue = EnumerationValue | NamedInstanceValue |
ObjectInstanceRef | TypeValue .

39i SelectInstanceRef = 0@’ SelectInstanceld .

Rules and restrictions:

a) The value of the instance shall be either a type instance reference, a select instance
reference, an enumeration instance reference, or an entity instance reference.

EXAMPLE 21 — A select instance

sl = type_or_entity{Qe27};

8.6 Enumeration instance

An enumeration instance is a representation of the value of one instance of an ENUMERATION
domain.

19

ISO/CD 10303-12

Syntax:

691 EnumerationInstance = EnumerationInstanceld ’=’
EnumerationInstanceValue ’;°’
701 EnumerationInstancelId = simple_id .
71i EnumerationInstanceValue = EnumerationDomain
’{’> EnumerationValue ’}’
281 EnumerationValue = ’!’ simple_id .
371 EnumerationInstanceRef = ’Q@’ EnumerationInstanceld .

Rules and restrictions:
a) The value of the instance shall be an enumeration value.

EXAMPLE 22 — Some enumeration instances

enuml = an_enum{!first};
enum2 = an_enum{'second’};

8.7 Entity instance

An entity instance is a representation of one instantiation of an ENTITY domain.

Syntax:

631 EntityInstance = EntityInstancelId ’=’ EntityInstanceValue ’;’
641 EntityInstanceld = simple_id .
65i EntityInstanceValue = EntityDomain ’{’ [InheritsFrom]
{ ExplicitAttr } { DerivedAttr }
{ InverseAttr } [BequeathsTo] ’}’
361 EntityInstanceRef = '@’ EntityInstanceld .

8.7.1 Attributes

An EXPRESS-I entity instance may have zero or more attributes. Attributes are classified into
explicit, derived and inverse attributes.

EXAMPLE 23 — Empty entity instances

e2 = ent_inst{};
eg = ent_inst{};

8.7.1.1 Explicit attributes

An explicit attribute is a required property of an entity.

20

ISO/CD 10303-12

Syntax:

72i ExplicitAttr = RequiredAttr | OptionalAttr .
101i RequiredAttr = RoleName ’->’ (ReqattValue | Nil) ’;°
941 OptionalAttr = RolelName ’->’ OptattValue ’;’
1021 Rolellame = attribute_ref .
100i ReqattValue = AggregationValue | BaseValue | ConstantRef |
NamedInstanceValue | ObjectInstanceRef |
ParameterRef | SelectValue | TypeValue .
91i ObjectInstanceRef = EntityInstanceRef | Enumeration InstanceRef |
SelectInstanceRef | TypeInstanceRef |
SimpleInstanceRef .
881 NamedInstanceValue = EnumerationInstanceValue |
SelectInstanceValue | TypeInstanceValue .
93i OptattValue = ReqattValue | Nil .
301 Nil = ’??

An explicit attribute consists of the attribute role name, followed by the symbol ->, followed
by the value of the domain of the role, and finally completed by a semi-colon. The value of the
role domain for a required attribute may be a reference to an entity or type instance, a value, a
named value, a constant or a parameter, or aggregates of these. The value of the role domain
for an optional attribute is the same as for a required attribute, with additionaly a Nil value
for when the value is not defined.

NOTE - An explicit attribute may be given a Nil value. In this case, if the entity definition is
based upon an EXPRESS ENTITY then the instance is not conforming to the EXPRESS definition.

EXAMPLE 24 — Explicit attributes

a_real -> 1.2;
an_integer -> 3;

a_list -> (1,2,3);
a_boolean -> TRUE;
a_logical —-> UNKNOWN;
an_enumeration -> !enumi;
a_string -> ’A string’;
entity_ref -> Qinstance2;
optional_str -> 7;
optional_int -> 42;
a_parameter -> parl;
a_constant -> ci;

8.7.1.2 Derived attribute

A derived attribute is one whose value can be calculated from the values of other properties of
an entity.

21

ISO/CD 10303-12

Syntax:

561 DerivedAttr = RolelNlame [’<-’ DerattValue] ’;’

1021 Rolellame = attribute_ref .

BE5i DerattValue = AggregationValue | BaseValue | EntityInstanceRef |
EntityInstanceValue | EnumerationInstanceValue |
TypeInstanceRef | TypeInstanceValue | TypeValue .

A derived attribute consists of the attribute role name, optionally followed by the symbol <-
and the value of the domain of the role, and finally completed by a semi-colon. The value of the
role domain may be a reference to an entity or type instance, a value, a constant, or aggregates
of these. Alternately, the value may be Nil in the case where the value is not defined.

EXAMPLE 25 — Derived attributes

a_real <- 1.2;
an_integer <- 3;
a_boolean <- TRUE;

a_logical;

an_enumeration <- !enumi;
a_string <- ’A string’;
entity_ref <- Qinstance2;
null_derived <= 7;

8.7.1.3 Inverse attribute

If an entity instance has established a relationship with the current entity instance via referencing
the current instance in an explicit attribute, then an inverse attribute may be used to describe
that relationship in the context of the current instance.

Syntax:

821 InverseAttr = Rolellame [’<-’ InvattValue] ’;’

1021 Rolellame = attribute_ref .

811 InvattValue = DynamicEntityRefList .

58i DynamicEntityReflist = ’(’ [EntityRefList] ’)’

66i EntityRefList = EntityInstanceRef { ’,’ EntityInstanceRef } .
361 EntityInstanceRef = '@’ EntityInstanceld .

An inverse attribute consists of the attribute role name, optionally followed by the symbol <-
and the value of the domain of the role, and finally completed by a semi-colon. The value of the
role domain is a (possibly empty) dynamic list of entity instance references.

EXAMPLE 26 — Inverse attributes
inverse_1 <- (®al, @b3);

inverse_2;
inverse_3 <- ();

22

ISO/CD 10303-12

8.7.2 Supertypes and subtypes

An EXPRESS-I entity instance inherits attributes and their values from its SUPERTYPE instances
(if any) and bequeathes attributes and their values to its SUBTYPE instances (if any).

Syntax:

461 BequeathsTo = SUPOF DynamicEntityRefList ’;°’
801 InheritsFrom = SUBOF DynamicEntityRefList ’;’

Supertype instances are referenced following the sUBOF keyword and are enclosed in parentheses.
Subtype instances are referenced following the sUPOF keyword and are enclosed in parentheses.

EXAMPLE 27 — Supertypes and subtypes

i1 = super{super_int -> 2; SUPOF(@s1); };
s1 sub{SUBOF(@il1); sub_real -> 23.7; };

i2 = super{super_int -> 7; SUPOF(@s2); };
s2 sub{SUBOF(@i2); sub_real -> -42.0; };

8.8 Schema data instance

A SCHEMA_DATA instance defines an instance of (part of) a representation of a universe of
discourse in which the elements declared have a related meaning and purpose. For example,
geometry might be the name of a schema that collects instances of points, curves, surfaces,
and other related elements. The order in which instances are declared in a schema instance is
arbitrary.

Syntax:

104i SchemalnstanceBlock = SCHEMA_DATA Schemald ’;’
[SchemaInstanceBody] END_SCHEMA_DATA ’;°
1031 Schemald = schema_ref .
1051 SchemaInstanceBody = [ConstantBlock] { ObjectInstance } .
90i ObjectInstance = EntityInstance | EnumerationInstance
SelectInstance | TypeInstance | SimpleInstance .

A schema instance declaration creates a new scope in which the following elements may be
declared:

— Constants;

— Entity instances;

— Enumeration instances;
— Select instances;

— Type instances.

23

ISO/CD 10303-12

8.9

EXAMPLE 28 — An instantiation of an EXPRESS defined schema.

SCHEMA_DATA whatsits;

(* EXPRESS defined constants *)
CONSTANT

one == 1.0;

twopl == 6.2831853;
END_CONSTANT;

(* EXPRESS defined types *)
nl = name{(’Joe’,’E’,’Bloggs’)};
n2 = name{(’Mary’,’Jones’)};

(* EXPRESS defined entities *)
pl = point{x -> one; y -> twopi;};
s1 = affianced{him -> @n1; her -> @n2;};

END_SCHEMA_DATA;

Constant instance

A constant declaration may be used to declare named constants. The scope of the constant
identifiers declared within a constant block shall be the schema in which the constant block
occurs. A named constant appearing in a constant declaration has an explicit initialization; the
value of a constant cannot be modified after initialisation. Any occurance of the named constant
outside the constant declaration shall be equivalent to an occurance of the initial value itself.

Syntax:

481 ConstantBlock = CONSTANT { ConstantSpec } END_CONSTANT ’;°

501 ConstantSpec = ConstantId ’==’ ConstantValue ’;’

491 ConstantId = constant_ref .

51i ConstantValue = AggregationValue | BaseValue | EntityInstanceValue |
NamedInstanceValue | SelectValue | TypeValue .

341 ConstantRef = ConstantId .

The value of a constant may be an aggregation of values.

Rules and restrictions:

a) Each value shall be a simple value, an entity instance value, an enumeration value, or

aggregations of these.

24

b) A named constant may appear in the declared value of another named constant.

EXAMPLE 29 — A coNSTANT block

CONSTANT
Zero == 0.0;
thousand == 1000;
origin == point{x -> zero; y -> zero;};

ISO/CD 10303-12

large_circle == circle{center -> origin; radius -> thousand;};
z_axis == [0.0, 0.0, 1.0];
END_CONSTANT;

8.10 Model display

A MODEL defines one particular instantiation of a representation of a universe of discourse in
which the elements have related meaning and purpose.

Syntax:

851 ModelBlock = MODEL ModelId ’;’ ModelBody END_MODEL ’;’
871 Modelld = simple_id .

86i ModelBody = { SchemaInstanceBlock } .

381 ModelRef = Modelld .

An EXPRESS-TI MODEL declaration creates a new scope in which the following elements may be
declared:

— Schema instances.
The intended usage of a MODEL is to exhibit the population of an object base.

EXAMPLE 30 — For instance, bugatti_35 might be the name of a MODEL that contains data
representing a car of type Bugattt Type 35. There may be several schema instances within this
MODEL; one, say, for the blueprints of the car, and another containing maintenance data on the car

type.
Rules and restrictions:

a) Each schema data instance within a MODEL shall be an instance of a different SCHEMA.
b) Each instance identifier within a MODEL shall be unique.

¢) Values within a model shall not be parameter references.

EXAMPLE 31 — A skeleton MODEL.
MODEL a_model;
SCHEMA_DATA a_schema;
ﬁﬁb_SCHEMA_DATA;
SCHEMA_DATA another_schema;

END_SCHEMA_DATA;
END_MODEL;

9 Test case specification

25

ISO/CD 10303-12

This clause describes the principal EXPRESS-T language elements related to the specification of

test

9.1

cases.

Context

A CONTEXT defines data instances and algorithms relevant to a representation of a universe of

discourse in which the elements have related meaning and purpose. The data instances may be

parameterised.
Syntax:
521 ContextBlock = CONTEXT ContextId ’;’ ContextBody END_CONTEXT ’;°’
541 ContextId = simple_id .
53i ContextBody = { SchemaReferenceSpec } [FormalParameterBlock]
{ SchemalnstanceBlock | SupportAlgorithm } .
361 ContextRef = ContextId .

An EXPRESS-I CONTEXT declaration creates a new scope in which the following elements may
be declared:

— References to EXPRESS schemas (see clause 10.2);
— Formal parameters;

— Schema data instances;

— EXPRESS functions;

— EXPRESS procedures.

EXAMPLE 32 - For instance, bugatti might be the name of a CONTEXT that contains parame-
terised (i.e generic) data representing a car of type Bugatti. There may be several schema instances
within this CONTEXT; one, say, for the blueprints of the car, and another containing maintenance
data on the car type.

Rules and restrictions:

a) Each schema data instance within a CONTEXT shall be an instance of a different

SCHEMA.

26

b) Each identifier within a cONTEXT shall be unique.

EXAMPLE 33 — A skeleton CONTEXT.
CONTEXT parameterised_model;
PARAMETER
ﬁﬁb_PARAMETER ;

SCHEMA_DATA a_schema;

ISO/CD 10303-12

END_SCHEMA_DATA;
SCHEMA_DATA another_schema;

END_SCHEMA_DATA;
END_CONTEXT;

9.2 Parameters

A context can have formal parameters. Each formal parameter has a name and a domain. The
name is an identifier that shall be unique within the scope of the context.

A test case can have actual parameters that provide specific values for the relevant formal
parameters within a context.

To allow a generalization of the data types used to pass values to contexts there are the domains
AGGREGATE and GENERIC. Conformant arrays may also be used to allow the generalization of
array domains.

9.2.1 Formal parameter

A formal parameter may have a default value, which shall be compatible with the domain.
Formal parameters that do not have default values are initialised to Nil.

Syntax:

781 FormalParameterBlock = PARAMETER
{ FormalParameter } END_PARAMETER ’;’

771 FormalParameter = ParameterId ’:’ parameter_type
[’:=’ ParmValueDefault] ’;’

951 ParameterId = simple_id .

253 parameter_type = < as EXPRESS > .

981 ParmValueDefault = AggregationValue | BaseValue | ConstantRef |
EntityInstanceValue | NamedInstanceValue |
ObjectInstanceRef | SelectValue | TypeValue |
expression .

204 expression = < as EXPRESS >

381 ParameterRef = ParameterId .

As there may be more than one schema data instance in a context containing parameters, it
may happen that two or more of these schemas have entities or types with the same name but
differing semantics. The use of one of these names as the domain identifier for a parameter
would then be ambiguous. In this case, the name is qualified by prepending the schema name
to the id with a dot as a seperator.

EXAMPLE 34 — A PARAMETER block.

PARAMETER
ivi : INTEGER := 1;
bvil : BOOLEAN;
p1 : name := name{first --> ’John’; last ——> ’Doe’;

27

ISO/CD 10303-12

married --> bvi;7};

p2 : name := name(’Mary’,’Smith’,TRUE);
a_list : LIST OF REAL := (0.0, 1.0, 2.0);
a_set : SET OF STRING;

a_select : selection := wheeled_vehicle;

from_schl : schl.vector := [1.0,3,0];
from_sch2 : sch2.vector := [3.0,4.0,-0.5];
END_PARAMETER;

9.2.2 Actual parameter

An actual parameter consists of a reference to a formal parameter, and a value for the parameter.
The value shall be compatible with the domain of the formal parameter. The value overrides
the default parameter value associated with the formal paramater.

Syntax:

42i ActualParameter = ParameterRef ’:=’ ParmValue .
381 ParameterRef = ParameterId .

97i ParmValue = ObjectInstanceRef | expression .
204 expression = < as EXPRESS >

EXAMPLE 35 — This shows some actual parameters for the formal parameters given in example 34.

ivi = 771,

bvl := FALSE;

pl := name(’John’, ’Smith’, bvl);
a_list := [20.0, 1.0, 20.0, 33.72];
a_set := [’alpha’, ’to’, ’omega’l;
a_select := Qv23;

from_sch1l := [0.0, -1.0];
from_sch2 := [0.5, -0.2, -0.15];

9.3 Test case

A TEST_CASE specifies both administrative and instance data which may be used for the purposes
of an abstract test case.

Syntax:

1201 TestCaseBlock = TEST_CASE TestCaseld ’;’
TestCaseBody END_TEST_CASE °’;’
1221 TestCaseld = simple_id .
1211 TestCaseBody = SchemaReferences ObjectiveBlock TestRealization
{ SupportAlgorithm }
1061 SchemaReferences = SchemaReferenceSpec { SchemaReferenceSpec }

A TEST_CASE declaration creates a new scope in which the following items may be declared or
referenced:

— The items under test (see clause 10.2);

28

ISO/CD 10303-12

— The test objective;
— The test realization;

— Supporting algorithms.

A TEST_CASE references one or more EXPRESS SCHEMAs. [t may reference a set of CONTEXTs,
and possibly a set of parameter values, for the purposes of defining a set of test data.

Rules and restrictions:

a) The value of each actual parameter declared in a test case shall be compatible with
the domain of the corresponding formal parameter declared in the context.

b) The test case value associated with each formal parameter in the context shall be that
declared as the actual parameter, or the default value of the formal parameter if an actual

parameter is not declared.

¢) Data types within a test case shall be restricted to those type definitions specified
within the referenced schemas.

9.4 Test objective

An OBJECTIVE is administrative data which may be used for an abstract test case.

Syntax:

92i ObjectiveBlock = OBJECTIVE { TestPurpose } { TestReference }
{ TestCriteria } { TestNotes }
END_OBJECTIVE ’;°’

An OBIJECTIVE declaration creates a new scope in which the following may be declared:

— The purpose of a test case;
— Reference to appropriate standards or specifications;
— Test criteria;

— Notes for the test analyst.
EXAMPLE 36 — An OBJECTIVE.

OBJECTIVE
NOTES This objective only contains
a note to the analyst.
END_NOTES;
END_OBJECTIVE;

29

ISO/CD 10303-12

9.4.1 Test purpose

A test purpose is text to be read by a human. It provides a description of the intent of a test.

Syntax:

1261 TestPurpose = PURPOSE Description END_PURPOSE ’;’
26i Description = {\a | \s | \n } .

The text commences with the keyword PURPOSE and is terminated by the keyword END_PURPOSE
and a semicolon. The text may span multiple lines.

EXAMPLE 37 — The text for this purpose extends over two lines.

PURPOSE This test is intended to check
the existance of a car instance. END_PURPOSE;

9.4.2 Test reference

A test reference is text to be read by a human. It provides a description of human interpretable
references to appropriate standards or specifications.

Syntax:

1271 TestReference = REFERENCES Description END_REFERENCES ’;’
26i Description = {\a | \s | \n } .

The text commences with the keyword REFERENCES and is terminated by the keyword END_REFERENCES
and a semicolon. The text may span multiple lines.

EXAMPLE 38 — A reference to a printed document.

REFERENCES Document AP279, pages 53-57. END_REFERENCES;

9.4.3 Test criteria

A test criteria is text to be read by a human. It provides a description of the criteria to be used
in judging the result of a test.

Syntax:

1241 TestCriteria = CRITERIA Description END_CRITERIA ’;°
26i Description = {\a | \s | \n } .

The text commences with the keyword CRITERIA and is terminated by the keyword END_CRITERIA
and a semicolon. The text may span multiple lines.

EXAMPLE 39 — A simple criterion.

CRITERIA At least one instance of a car must be present. END_CRITERIA4;

30

ISO/CD 10303-12

9.4.4 Test notes

Test notes is text to be read by a human. It provides a means of describing general notes to
assist the test analyst.

Syntax:

1251 TestNotes = NOTES Description END_NOTES ’;°’
26i Description = {\a | \s | \n } .

The text commences with the keyword NOTES and is terminated by the keyword END_NOTES
and a semicolon. The text may span multiple lines.

EXAMPLE 40 — A single line note.

NOTES Remember to fasten your seat belt. END_NOTES;

9.5 Test realization

A test realization provides for the definition of the data elements pertaining to a test case.

Syntax:

123i TestRealization = REALIZATION { local_decl } { UseContextBlock }
{ assignment_stmt } END_REALIZATION ’;’

239 local_decl = < as EXPRESS > .

166 assignment_stmt = < as EXPRESS > .

A realization commences with the keyword REALIZATION and is terminated by the keyword
END_REALIZATION and a semicolon.

A test realization may contain:

— References to context data and parameters (see clause 10.3);
— Local variables (specified using EXPRESS syntax);

— Assignment statements (specified using EXPRESS syntax).

EXAMPLE 41 — This realization defines p1 to be a variable of type point. It then calls for the
creation of a point at (1,2,3), assigning the instance to the variable p1.

REALIZATION
LOCAL
pl : point;
END_LOCAL;

pl := point(1.0, 2.0, 3.0);
END_REALIZATION;

31

ISO/CD 10303-12

10 Interfaces

This clause specifies the interfaces between EXPRESS-Tinstances and EXPRESS models, together
with the interfaces between the EXPRESS-I constructs.

10.1 Schema instance interface

Syntax:

104i SchemalnstanceBlock = SCHEMA_DATA Schemald;

[SchemaInstanceBody] END_SCHEMA_DATA ’;°
1031 Schemald = schema_ref .
152 schema_ref = < as EXPRESS > .

Assuming that there is an associated EXPRESS (or equivantly EXPRESS-G) SCHEMA, then the
Schemald refers to the name of the EXPRESS scHEMA. That is, the body of the EXPRESS-T
schema data instance contains data instances of the definitions within the identified EXPRESS
schema. It shall not contain data instances of definitions that are external to that EXPRESS
schema.

NOTE — References to schemas that are defined in languages other than EXPRESS or EXPRESS-G
are out of scope. However, the SchemaId could be considered to reference a schema that has been
defined in a non-EXPRESS language.

10.2 Schema reference

A schema reference enables a particular EXPRESS SCHEMA to be identified together with par-
ticular definitions within that schema.

Syntax:

1071 SchemaReferenceSpec = WITH schema_ref [USING ’(’ resource_ref
{ ’,’ resource_ref } ’)’ 1 ’;?

152 schema_ref = < as EXPRESS > .

275 resource_ref = < as EXPRESS > .

The schema_ref following the wiTH keyword identifies a particular EXPRESS schema. Individ-
ual declarations of interest within the EXPRESS schema are identified in the list following the
USING keyword.

Omission of the USING list implies that all the definitions within the identified EXPRESS schema
are available.

NOTE — The schema reference acts in a similar manner to the EXPRESS USE statement.
EXAMPLE 42 — Given the following EXPRESS definition
SCHEMA a_schema;

ENTITY entityl; ... END_ENTITY;
ENTITY entity2; ... END_ENTITY;

32

10.

ISO/CD 10303-12

ENTITY entity7; ... END_ENTITY;

TYPE typel9 = ... END_TYPE;

TYPE type21 = ... END_TYPE;
END_SCHEMA;

SCHEMA another_schema;
END_SCHEMA;
Then the following identifies two entities and one type from the a_schema schema.

WITH a_schema USING (entityl, entity7, type2l);

3 Context data references

Elements of a CONTEXT can be imported into a TEST_CASE and actual values can be given to
the formal parameters in the CONTEXT.

Syntax:

1341 UseContextBlock = CALL ContextRef ’;’ UseContextBody END_CALL ’;’
361 ContextRef = ContextId .

1351 UseContextBody = [ImportSpec] [ParameterSpec]

791 ImportSpec = IMPORT ’(’ { Assignment } ’)’ ’;°

441 Assignment = variable_id ’:=’ SelectableInstanceRef ’;’

96i ParameterSpec = WITH ’(’ { ActualParameter } ’)’ ’;’

1081 SelectableInstanceRef = EntityInstanceRef | EnumerationInstanceRef |

SelectInstanceRef | TypeInstanceRef .

A particular CONTEXT is identified via the CALL statement.

Object instances of interest to a test case that exist in the CONTEXT are identified in the IMPORT

list.

Each instance value shall be assigned to a variable.

Values for the formal parameters in the CONTEXT (if any) are set via the wiTH list. These values
shall overide the default value (if any) of the identified parameters.

11

EXAMPLE 43 — A caLL specification

CALL a_context;
IMPORT (ent_var := Q@ent_21;
ent_27 := Qent_27;);
WITH (ivl := 771;
a_set := [’alpha’, ’to’, ’omega’l;);
END_CALL;

Scope and visibility

An EXPRESS-I declaration creates an identifier which can be used to reference the declared item
in other contexts. Some EXPRESS-T constructs implicitly declare EXPRESS-T items, attaching

33

ISO/CD 10303-12

identifiers to them. In those areas where an identifier for a declared item may be referenced,
the declared item is said to be visible. An item may only be referenced where its identifier is
visible. For the rules of visibility see 11.2.

Certain EXPRESS-I items define a region (block) of text called the scope of the item. This
scope limits the visibility of identifiers declared within it. Scopes can be nested; that is, an
EXPRESS-T item which establishes a scope may be included within the scope of another item.
There are constraints on which items may appear within a particular EXPRESS-I item’s scope.
These constraints are usually enforced by the syntax of EXPRESS-I (see annex A).

Table 9 — Scope and identifier defining EXPRESS-T items

Item Scope | Identifier
constant instance °
context . °
entity instance °
enumeration instance °
model ° °
schema data instance ° °
select instance °
simple instance °
test case . °
type instance °

NOTE - EXPRESS-I also utilises various EXPRESS constructs that similarly have identifiers and
scope. These are listed in table 10.

For each of the items specified in table 9 and table 10 the following subclauses specify the limits
of the scope defined, if any, and the visibility of the declared identifier both in general terms
and with specific details.

11.1 Scope rules
The following are the general rules which are applicable to all forms of scope definition allowed
within the EXPRESS-I language; see table 9 and table 10 for the list of items which define scopes.
Rules and restrictions:

a) All declarations shall exist within a scope.
b) Within a single scope an identifier may be declared, or explicitly interfaced, once only.

¢) The scopes shall be correctly nested, i.e., scopes shall not overlap (this is forced by the
syntax of the language).

A maximum permitted depth of nesting is not specified by this part of ISO 10303 but imple-
mentations of EXPRESS-T parsers may specify a maximum depth of scope nesting.

34

ISO/CD 10303-12

Table 10 — Scope and identifier defining EXPRESS items utilised by EXPRESS-I.

Item Scope Identifier
alias statement o ol
attribute °
constant °

entity . °
enumeration °
function ° °
parameter .
procedure . °

query expression ° o!
repeat statement o ol:2
rule label °

type . .

type label °
variable °
NOTES

1 — The identifier 1s an 1implicitly declared variable within
the defined scope of the declaration.

2 — The variable is only implicitly declared when an incre-
ment control is specified.

35

ISO/CD 10303-12

11.2 Visibility rules

The visibility rules for identifiers are described below. See table 9 and table 10 for the list of
EXPRESS-T items which declare identifiers. The visibility rules for named data type identifiers
are slightly different from those for other identifiers; these differences are described in 11.2.2.

11.2.1 General rules of visibility

The following are the general rules which are applicable to all identifiers except the named data
type identifiers, for which rule (d) does not apply.

Rules and restrictions:

a) An identifier is visible in the scope in which it is declared. This scope is called the
local scope of the identifier.

b) Anidentifier is visible in a particular scope, it is also visible in all scopes defined within
that scope, subject to rule (d).

¢) An identifier is not visible in any scope outside its local scope, subject to rule (f).

d) When an identifier ¢ visible in a scope P is re-declared in some inner scope) enclosed
within P, only the ¢ declared in scope @ is visible in) and any scopes declared within Q.
The ¢ declared in scope P is visible in P and in any inner scopes which do not re-declare 7.

e) The built-in constants, functions, procedures and types of EXPRESS-I are considered
to be declared in an imaginary universal scope. All EXPRESS-I scopes are nested within this
scope. The identifiers which refer to the built-in constants, functions, procedures and types
of EXPRESS-T are visible in all scopes defined by EXPRESS-I.

f) Enumeration item identifiers declared within the scope of a defined data type are
visible in the next outer scope, unless the next outer scope contains a declaration of the
same identifier for another item.

NOTE — If the next outer scope contains a declaration of the same identifier, the enumeration
items are still accessible but have to be prefixed by the defined data type identifier.

g) Some EXPRESS-I declarations which are normally invisible may be made visible by
interface specifications (see clause 10).

11.2.2 Named data type identifier visibility rules

With one exception, named data type identifiers obey the same visibility rules as other identifiers.
The exception is to visibility rule (d). An entity or defined data type identifier ¢ declared in a
scope P remains visible in an inner scope @} even if it is redeclared in @), provided that either:

a) The scope @ is defined by an entity declaration, and i is declared as an attribute in
that scope, or

36

ISO/CD 10303-12

b) Thescope () is defined by a function, procedure or context declaration, and 7 is declared
as a formal parameter or variable in that scope.

EXAMPLE 44 — In entityl, d refers to both an entity data type and an attribute.

FUNCTION example(par : INTEGER): INTEGER;
ENTITY d;
attrl : REAL;
END_ENTITY;
ENTITY entityl;

d : d; -- d in this scope is both an entity
END_ENTITY; —-— and an attribute.

END_FUNCTION;

11.3 Explicit item rules

The following clauses provide more detail on how the general scoping and visibility rules apply
to the various EXPRESS-T items.

EXPRESS-T utilises much of the EXPRESS language. The scoping and visibility rules for most
of these EXPRESS items within EXPRESS-T are identical to those of EXPRESS as defined in
ISO 10303. Table 11 identifies these items. The table further identifies those items common to
both EXPRESS and EXPRESS-T whose EXPRESS rules are modified when they are used within
EXPRESS-T and those items which are particular to EXPRESS-I.

NOTE - The modifications to the EXPRESS rules are due principally to the fact that EXPRESS-1
does not utilise the EXPRESS SCHEMA or RULE constructs.

11.3.1 Alias statement

The scope and visibilty rules for the ALIAS statement are defined in ISO 10303-11.

11.3.2 Attribute

The scope and visibilty rules for an attribute are defined in ISO 10303-11.

11.3.3 Constant

Visibility: A constant identifier is visible in the scope of the function or procedure in which
it is declared.

NOTE - The EXPRESS specification is:

37

ISO/CD 10303-12

38

Table 11 — Scope and visibility rules.

Item

EXPRESS
rules

EXPRESS
modified rules

EXPRESS-1
specific

alias statement
attribute
constant
constant instance
context

entity

entity instance
enumeration
enumeration instance
function

model

parameter
procedure

query expression
repeat statement
rule label

schema data instance
select instance
simple instance
test case

type

type instance
type label
variable

ISO/CD 10303-12

A constant identifier 1s visible in the scope of the function, procedure, rule or schema
in which 1t is declared.

11.3.4 Constant instance

Visibility: A constance instance identifier is visible in the scope of the schema data instance
in which it is declared and in any outer scope of the schema data instance.

11.3.5 Context

Visibility: A context identifier is visible to all test cases.

Scope: A context declaration defines a new scope. The keyword CONTEXT starts this scope
which extends to the keyword END_CONTEXT which terminates that context declaration.

Declarations: The following items may declare identifiers within the scope of a context
declaration:

— formal parameter;
— function;
— procedure;

— schema data instance.

11.3.6 Entity

Visibility: An entity identifier is visible in the scope of the function or procedure in which
it is declared. An entity identifier remains visible, under the conditions defined in 11.2.2,
within inner scopes which redeclare that identifier.

NOTE - The EXPRESS specification is:

An entity identifier is visible in the scope of the function, procedure, rule or schema
in which 1t is declared. An entity identifier remains visible . ..

Scope and declarations: The scope and allowable declarations are defined in ISO 10303-
11.

EXAMPLE 45 — The attribute identifiers batt in the two entities do not clash as they are declared

in two different scopes.

ENTITY entityil;
aatt : INTEGER;
batt : INTEGER;

39

ISO/CD 10303-12

END_ENTITY;

ENTITY entity2;

a : entityl;
batt : INTEGER;
END_ENTITY;

EXAMPLE 46 — The following specification is illegal because the attribute identifier aatt is re-
peated within the scope of a single entity. Although the rule label 1ab is declared in both entities,
this does not violate any scoping or visibility rule; the declaration in entity may_be_ok is not visible
in the entity illegal, but both domain rules must be checked.

ENTITY may_be_ok;
quantity : REAL;

WHERE
lab : quantity >= 0.0;
END_ENTITY;

ENTITY illegal
SUBTYPE OF (may_be_ok);
aatt : INTEGER;
batt : INTEGER;

aatt : REAL;
WHERE

lab : batt < 0;
END_ENTITY;

11.3.7 Entity instance

Visibility: An entity instance identifier is visible in the scope of the schema data instance
in which it is declared and in any outer scope of the schema data instance.

11.3.8 Enumeration item

Visibility: An enumeration item identifier is visible in the scope of the function or proce-
dure in which its type is declared. This is the exception to the visibility rule f of 11.2.1. The
identifier shall not be declared for any other purpose in this scope, except by another enu-
meration data type declaration in the same scope. If the same identifier is declared by two
enumeration data types as an enumeration item, a reference to either enumeration item shall
be prefixed with the data type identifier in order to ensure that the reference is unambiguous.

NOTE - The EXPRESS specification is:

An enumeration item identifier is visible in the scope of the function, procedure, rule
or schema in which 1ts type is declared. This is the exception ...

40

ISO/CD 10303-12

11.3.9 Enumeration instance

Visibility: An enumeration instance identifier is visible in the scope of the schema data
instance in which it is declared and in any outer scope of the schema data instance.

11.3.10 Function

Visibility: A function identifier is visible in the scope of the function, procedure, context
or test case in which it is declared.

NOTE - The EXPRESS specification is:

A function identifier 1s visible in the scope of the function, procedure, rule or schema
in which 1t is declared.

Scope and declarations: The scope and allowable declarations are defined in ISO 10303-
11.

11.3.11 Model

Scope: A model declaration defines a new scope. This scope extends from the keyword
MODEL to the keyword END_MODEL which terminates that model declaration.

Declarations: The following items may declare identifiers within the scope of a model
declaration:

— schema data instance.

11.3.12 Parameter

Visibility: A formal parameter identifier is visible in the scope of the function, procedure
or context in which it is declared.

NOTE - The EXPRESS specification is:

A formal parameter 1dentifier is visible in the scope of the function or procedure in
which it 1s declared.

EXAMPLE 47 — The following is illegal, as the formal parameter identifier parm is also used as the
identifier of a local variable.

CONTEXT illegal;
PARAMETER
parm : REAL;

END_PARAMETER;

41

ISO/CD 10303-12

LOCAL
parm : STRING;
END_LOCAL;

END_CONTEXT;

11.3.13 Procedure

Visibility: A procedure identifier is visible in the scope of the function, procedure, context
or test case in which it is declared.

NOTE - The EXPRESS specification is:

A procedure identifier is visible in the scope of the function, procedure, rule or schema
in which 1t is declared.

Scope and declarations: The scope and allowable declarations are defined in ISO 10303-
11.

11.3.14 Query expression

The scope and visibility of a QUERY expression is defined in ISO 10303-11.

11.3.15 Repeat statement

The scope and visibility of a REPEAT statement is defined in ISO 10303-11.

11.3.16 Rule label
Visibility: A rule label is visible in the scope of the entity or type in which it is declared.
NOTE 1 - The EXPRESS specification is:

A rule label is visible in the scope of the entity, rule or type in which 1t is declared.

NOTE 2 — The rule label is only of use to an implementation. Neither EXPRESS nor EXPRESS-1
provides a mechanism for referencing rule labels.

11.3.17 Schema data instance

Scope: A schema data declaration defines a new scope. This scope extends from the key-
word SCHEMA _DATA to the keyword END_SCHEMA _DATA which terminates that schema data
declaration.

Declarations: The following items may declare identifiers within the scope of a schema
data declaration:

42

ISO/CD 10303-12

— constant instance;

— entity instance;

— enumeration instance;
— select instance;

— simple instance;

— type instance.

11.3.18 Select instance

Visibility: A select instance identifier is visible in the scope of the schema data instance in
which it is declared and in any outer scope of the schema data instance.

11.3.19 Simple instance

Visibility: A simple instance identifier is visible in the scope of the schema data instance
in which it is declared and in any outer scope of the schema data instance.

11.3.20 Test case

Scope: A test case defines a new scope. This scope extends from the keyword TEST_CASE
to the keyword END_TEST_CASE which terminates that test case.

Declarations: The following items may declare identifiers within the scope of a test case:
— function;
— procedure;

— variable.

11.3.21 Type

Visibility: A type identifier is visible in the scope of the function or procedure in which it
is declared. A type identifier remains visible, under certain conditions, in inner scopes which
redeclare that identifier; see 11.2.2 for the definition of the allowed conditions.

NOTE - The EXPRESS specification is:

A type identifier is visible in the scope of the function, procedure, rule or schema in
which it 1s declared. A type identifier remains visible . ..

43

ISO/CD 10303-12

Scope and declarations: The scope and allowable declarations are defined in ISO 10303-
11.

11.3.22 Type instance

Visibility: A type instance identifier is visible in the scope of the schema data instance in
which it is declared and in any outer scope of the schema data instance.

11.3.23 Type label

The scope and visibility are defined in ISO 10303-11.

11.3.24 Variable

Visibility: A variable identifier is visible in the scope of the function, procedure or test case
in which it is declared.

NOTE - The EXPRESS specification is:

A variable 1dentifier is visible in the scope of the function, procedure or rule in which
it 1s declared.

12 Mapping from EXPRESS to EXPRESS-I

This clause specifies the mapping of EXPRESS schema and type definitions to EXPRESS-I in-
stances.

Table 12 gives an overview of the EXPRESS to EXPRESS-I mappings. These are described in
more detail below.

12.1 Mapping of EXPRESS schema

The EXPRESS construct of SCHEMA maps syntactically to the EXPRESS-I construct of schema
data instance. Table 13 gives an overview of the correspondance between the EXPRESS and
EXPRESS-I constructs.

Rules and restrictions:

a) The name of the EXPRESS-I schema data instance shall be the same as the name of
the corresponding EXPRESS schema.

b) Each entity instance within a schema data instance shall have a corresponding entity
definition within the EXPRESS schema.

44

ISO/CD 10303-12

Table 12 — Summary overview of EXPRESS to EXPRESS-I mappings.

EXPRESS EXPRESS-1
ARRAY, BAG, LIST, SET | AggregationValue
CONSTANT ConstantBlock
ContextBlock
ENTITY EntityInstance
ENUMERATION Enumeration instance or value
FormalParameterBlock
FUNCTION
ModelBlock
PROCEDURE
Remark
RULE
SCHEMA SchemaInstanceBlock
SELECT Select instance or value
Simple type SimpleValue
TestCaseBlock
TYPE Type instance or value

Table 13 — Overview of SCHEMA mapping.

EXPRESS EXPRESS-1

SCHEMA name | schema_id

CONSTANT ConstantBlock or none
ENTITY EntityInstance
ENUMERATION | EnumerationInstance or none
FUNCTION none

PROCEDURE none

REFERENCE none, but see clause 12.1.1
RULE none

SELECT SelectInstance or none
TYPE TypeInstance or none
USE none, but see clause 12.1.1

45

ISO/CD 10303-12

¢) Fach enumeration, select or type instance within a schema data instance shall have a
corresponding definition within the EXPRESS schema.

d) Each constant within a schema data instance shall have a corresponding constant
definition within the EXPRESS schema.

e) FEach domain specification within a schema data instance shall be uniquely identified,
if necessary by qualifying the domain name with the name of the EXPRESS schema which
contains the domain definition.

f) Instance identifiers shall be unique within a schema data instance.

12.1.1 Mapping of use and reference

The EXPRESS Ust and REFERENCE statements do not map directly to EXPRESS-I but their
effects do occur:

— Instances of EXPRESS elements that are brought within the scope of an EXPRESS
schema via explicit USE or REFERENCE statements, or that are implicitly referenced, may
occur within a corresponding EXPRESS-I schema data instance.

— FElements whose domains are renamed, shall have their domains specified via the new
names.

— If there are name clashes between the domains in the original EXPRESS schema and
those that are brought in from another schema, then the brought in names shall be qualified
with the name of their parent schema.

EXAMPLE 48 — These EXPRESS schemas are interlinked as the schema called primary utilizes
the definition of the entity called an_ent from the secondary schema

SCHEMA primary;
USE FROM secondary (an_ent AS used);

ENTITY dup;
attl : used;
att2 : BOOLEAN;
END_ENTITY;
END_SCHEMA ;

SCHEMA secondary;

ENTITY dup;
name : STRING;
int : INTEGER;
END_ENTITY;

ENTITY an_ent;

att3 : dup;
att4 : REAL;

46

ISO/CD 10303-12

END_ENTITY;
END_SCHEMA;

Any usage of an_ent in an instance of the primary schema requires an instance of the entity
called dup which 1s also defined in the secondary schema and which is automatically made available
through the semantics of the USE clause. However, in this case, there is also an entity called dup in the
primary schema. These two domains must be distinguished within an EXPRESS-I representation
of primary by qualifying the name of the enity that is brought in from the secondary schema, as
in the following.

MODEL example;
SCHEMA_DATA primary;
dupl = dup{attil -> Qusedl; att2 —-> TRUE;};
usedl = used{att3 -> @dup2; att4 -> 1.23;};
dup2 = secondary.dup{name -> ’from secondary’; int -> 1;};
used2 = used{att3 -> @dup3; att4 -> -3.9;};
dup3 = secondary.dup{name -> ’from secondary’; int -> 2;};
END_SCHEMA_DATA;

SCHEMA_DATA secondary;
dup3 = dup{name -> ’in secondary’; int -> 3;};
dup4 = dup{name -> ’in secondary’; int -> 4;};
an_entl = an_ent{att3 -> @dup3; att4 -> 42.0;};
END_SCHEMA_DATA;
END_MODEL;

12.2 Mapping of EXPRESS simple data types

The mapping from an EXPRESS simple data type to an EXPRESS-T value is given in table 14.

Table 14 — Simple type mapping.

EXPRESS | EXPRESS-1

BINARY BinaryValue
BOOLEAN |BooleanValue
INTEGER |IntegerValue
LOGICAL |LogicalValue
NUMBER |IntegerValue
SignedMathConstant
SignedRealValue
REAL SignedMathConstant
SignedRealValue
STRING StringValue

EXAMPLE 49 — Mapping of simple data types

EXPRESS EXPRESS-I

ENTITY base; el = base{

47

ISO/CD 10303-12

a_binary : BINARY; a_binary -> %0110;
a_boolean : BOOLEAN; a_boolean -> FALSE;
an_integer : INTEGER; an_integer —> 12345;
a_logical : LOGICAL; a_logical -> UNKNOWN;
a_number : NUMBER; a_number -> -PI;
a_real : REAL; a_real -> -9.99e2;
a_string : STRING; a_string —-> ’Tangles’;
END_ENTITY; };

12.3 Mapping of aggregation data types

The mapping of EXPRESS aggregations to EXPRESS-I is given in table 15.

Table 15 — Mapping of AGGREGATES.

EXPRESS EXPRESS-1
AGGREGATE | one of the following:
ARRAY FixedAggr

BAG DynamicAggr

LIST DynamicAggr

SET DynamicAggr

The mapping of “aggregation of aggregation of ...” is done by mapping each elemental aggre-

gation in order, reading from left to right. That is, the leftmost EXPRESS aggregation becomes
the outermost EXPRESS-I aggregation.

EXAMPLE 50 — Aggregate mappings

EXPRESS EXPRESS-1
ENTITY aggr; el = aggr{
an_array : ARRAY [1:3] OF INTEGER; an_array -> [1,2,3];
a_bag : BAG [0:7] OF INTEGER; a_bag -> (3,3,1);
a_list : LIST [0:2] OF INTEGER; a_list —> (1);
a_set : SET [1:7] OF INTEGER; a_set —> (9,5,11);
a_mix : ARRAY [1:2] OF SET OF INTEGER; a_mix —> [(1,2),(6,5)];
END_ENTITY; };

NOTE - An EXPRESS ARRAY may have OPTIONAL values. If the values are unspecified in an
instance of an ARRAY then these values are denoted by the Nil construct (i.e the ? character) in

EXPRESS-I.
EXAMPLE 51 — Sparse array mapping

EXPRESS EXPRESS-I
ENTITY sparse; el = sparseq
al : ARRAY [1:4] OF OPTIONAL INTEGER; al > [1,7,7,4];
a2 : ARRAY [5:8] OF OPTIONAL INTEGER; a2 -> [1,7,3,7];
END_ENTITY; 3

48

ISO/CD 10303-12

12.4 Mapping of EXPRESS defined data type

An EXPRESS defined data type is mapped to EXPRESS-T in one of three ways:
a) by replacing the EXPRESS type identifier by the type value;

b) by replacing the EXPRESS type identifier by the named type value;

¢) by specifying a type instance.
EXAMPLE 52 — Mapping a defined data type

EXPRESS EXPRESS-1
TYPE dd = ARRAY [1:2] OF t3 = dd{[e,81%};
INTEGER;
END_TYPE;
ENTITY use_type; el = use_type{attr —> [2,4];};
attr : dd; e2 = use_type{attr —> dd{[4,6]};};
END_ENTITY; e3 = use_type{attr -> 0t3;};

12.5 Mapping of EXPRESS enumeration type

An EXPRESS ENUMERATION type is mapped to EXPRESS-T in one of three ways:
a) by replacing the EXPRESS type identifier by the enumeration value;

b) by replacing the EXPRESS type identifier by the named enumeration value;

¢) by specifying an enumeration instance.

EXAMPLE 53 — Mapping an enumeration

EXPRESS EXPRESS-1
TYPE enum = ENUMERATION OF t3 = enum{!threel};
(one, two, three);
END_TYPE;
ENTITY use_enum; el = use_enum{attr -> 'one;7};
attr : enum; e2 = use_enum{attr —> enum{!'twol};7};
END_ENTITY; e3 = use_enum{attr -> @t3;7};

12.6 Mapping of EXPRESS select type

An EXPRESS SELECT type is mapped to EXPRESS-T in one of three ways:
a) by replacing the EXPRESS type identifier by the select value;

b) by replacing the EXPRESS type identifier by the named select value;

49

ISO/CD 10303-12

¢) by specifying a select instance.
An EXPRESS SELECT type may not necessarily be mapped directly into EXPRESS-I. The details
of the mapping depend on how the SELECT type is formed, as described below.

A SELECT type defines a tree. The root is the SELECT type and the branches from the root
correspond to the types of the choices within the sELECT. If one of these types is itself a SELECT
then this gives rise to further branches, and so on. The leaves of the tree are composed of the
choices that are not SELECT types. In the simple case all leaves are of different types. In the
complex case, at least two of the leaves have the same base type.

12.6.1 Simple select case

The type is treated as a reference to, or an occurrence of, one of the types in its select list.

EXAMPLE 54 — Simple select mapping

EXPRESS EXPRESS-1
ENTITY a; el = afaa —> 3;};
aa : INTEGER; e3 = a{aa > 9;};
END_ENTITY,;
ENTITY b; e2 = b{ab -> 6;};
ab : INTEGER; e4 = bfab -> 12;};
END_ENTITY,;
TYPE s = SELECT (a, b); s4 = s{0@e4};
END_TYPE;
ENTITY c; cl = c{ac —> (@s4, @3, @2, @1);7};
ac : LIST [1:7?] OF s; c2 = c{ac —> (s{@1}, @3, @3);7};
END_ENTITY,;

12.6.2 Complex select case

In this case, the leaves of the tree are not distinguishable by their value alone. This occurs when:

a) the leaves are defined data types with identical base types, or

b) theleaves are ENUMERATION types where the set of values in the leaves are not disjoint.
For example, the sets [red, green, blue] and [red, amber, green] are not disjoint.

The value of the select instance in this case shall be represented in EXPRESS-T either by a
reference to an instance or by a named value.

EXAMPLE 55 — Complex select mapping

EXPRESS EXPRESS-1
TYPE size = SELECT s1 = size{@ri};
(area, radius); 82 = size{radius{4.3}};

50

END_TYPE;

TYPE area =
END_TYPE;

REAL;

TYPE radius = REAL;
END_TYPE;

ENTITY circle;
howbig :

WHERE
howbig > 0.0;

END_ENTITY;

size;

al

ri

cl
c2
c3
cd
ch

area{7.57};

radius{27.89};

circle{howbig ->
circle{howbig ->
circle{howbig ->
circle{howbig ->
circle{howbig ->

12.7 Mapping of EXPRESS constant

ISO/CD 10303-12

area{PI};7};
radius{1.0};};
Qs1;};

Qal};

0s2};

An EXPRESS CONSTANT maps syntactically to the EXPRESS-T construct of constant_spec.
That is, the constant identifier and value only is specified in EXPRESS-T — the domain of the
constant value is provided by the original EXPRESS definition.
shall be completely evaluated. Each constant specification appearing in a schema instance shall
have been declared in the EXPRESS schema definition. However, it is not required that each
EXPRESS CONSTANT appear within a schema instance.

EXAMPLE 56 — Constant mapping

EXPRESS

CONSTANT
zero : NUMBER := 0.0;
thousand : INTEGER := 1000;
million : INTEGER := thousand**2;
origin : point := point(0.0, 0.0);
Z_axis : vector := [zero, zero, 1.0];
a_set : SET OF INTEGER := [1,2,3%3];
a_bag : BAG OF INTEGER := [1,3,1];
boss : STRING := ’sir’ ;
underling : STRING := ’hey, you’;

END_CONSTANT;

Further, the constant value

EXPRESS-1
CONSTANT
zero == 0.0;
thousand == 1000;
million == 1000000;
origin == point{x -> 0.0;
y -> 0.0;3};
Z_axis == [0.0, 0.0, 1.0];

a_set == (1, 2, 9);

underling
END_CONSTANT;

12.8 Mapping of EXPRESS entity

=

hey, you’;

The EXPRESS construct of ENTITY maps syntactically to the EXPRESS-T construct of entity
instance. It is to be noted that the only internal portions of an ENTITY that are mapped to
EXPRESS-T are attributes, and SUPERTYPE and SUBTYPE clauses, as listed in table 16.

EXAMPLE 57 — Simple entity mapping

EXPRESS

EXPRESS-I

51

ISO/CD 10303-12

Table 16 — Overview of ENTITY mapping.

EXPRESS EXPRESS-1

ENTITY name EntityDomain

SUPERTYPE clause | BequeathsTo

SUBTYPE clause InheritsFrom

explicit attribute |RequiredAttr or OptionalAttr
derived attribute |DerivedAttr

inverse attribute | InverseAttr

UNIQUE clause none
WHERE clause none
ENTITY top; t1 = top{a -> (Qegl, Qeg2);};
a : SET OF bot; t2 = top{a —> (Qeg2, Qeg3);};
END_ENTITY; £3 = top{a —> ();};
ENTITY bot; egl = bot{i -> 1;
i : INTEGER; j <= 2;
DERIVE inv <- (Qt1);};
j : INTEGER := 2%i;
INVERSE eg2 = bot{i -> 276;
inv : BAG [1:7] OF top FOR attr; j <- b552;
UNIQUE inv <- (@t1, @t2);};
ul : i;
WHERE eg3 = bot{i -> 9876;
wl : i > 0; Js
END_ENTITY; inv <- (@t2);7};

12.9 Mapping of EXPRESS entity attributes

EXPRESS-T attributes shall appear in the same order as in the corresponding EXPRESS ENTITY.
Each EXPRESS attribute shall have a corresponding EXPRESS-T attribute.

The EXPRESS-I value of an attribute shall be compatible with the domain of the EXPRESS
definition.

12.9.1 Explicit attribute

Explicit EXPRESS attributes map in a straightforward manner to EXPRESS-I attributes. The
description of the EXPRESS attribute is repeated in EXPRESS-T except that the description of
the type of the attribute (i.e the right hand side after the colon) is replaced by the value of the
attribute type and the colon is replaced by ->.

The value may be represented by a simple value, an object instance reference (i.e an entity,
type, enumeration or select instance reference), an enumeration value, a named value, a constant
reference, or a parameter reference, or aggregates of these. These are discussed in more detail
below.

52

ISO/CD 10303-12

In the case where an explict attribute is OPTIONAL the attribute value may also be Nil, indicating
that the value is not supplied.

EXAMPLE 58 — Mapping an optional attribute

EXPRESS EXPRESS-I
ENTITY opt; optl = opt{req -> ’Opt-att given’;
req : STRING; opt_att -> 5.0; };
opt_att : OPTIONAL REAL;
END_ENTITY; opt2 = opt{req -> ’Opt-att not given’;

opt_att -> 7; I};

NOTE - In EXPRESS-I a non-optional explicit attribute may have a Nil value, in which case the
instance is non-conforming with respect to the EXPRESS definition.

12.9.2 Derived and inverse attributes

Derived EXPRESS attributes map to EXPRESS-T in a similar manner to explicit attributes,
except that the symbol <- relaces the colon.

Inverse EXPRESS attributes map to EXPRESS-Tin a similar manner to explicit attributes, except
that the symbol <- relaces the colon, and the attribute value is a dynamic aggregation of entity
instance references.

It should be noted that there is no requirement that the values of derived or inverse attributes
appear in EXPRESS-T although the role names shall appear.

NOTES

1 — By definition, the value of a derived attribute can be determined from the values of the explicit
attributes. Similarly, the value of an inverse attribute of an entity instance can be determined from
the attribute values of other entity instances that reference the entity instance with the given inverse
attribute. Thus, conceptually at least, both derived and inverse attribute values are calculable
properties.

2 — On the other hand, the values of explicit attributes are basic input data that is not calculable
within an EXPRESS-I system.

3 — The symbols -> and <- were designed to indicate this difference in the qualities of attribute
values.

12.9.3 Attribute with a simple domain

When the domain of an EXPRESS attribute is a simple data type this shall be mapped as an
EXPRESS-T value belonging the simple domain. Typically this is a simple value, but may be a
constant or parameter reference whose domain is the simple domain.

Rules and restrictions:

a) Constant reference shall only be used if both the entity instance and the constant
instance is within the the same schema data instance.

53

ISO/CD 10303-12

54

b) Parameter reference shall only be used if the formal parameter and the entity instance
are both within the same CONTEXT.

¢) Parameter reference shall not be used within the scope of a MODEL.

EXAMPLE 59 — Mapping a simple value as attribute:
Given the EXPRESS as

SCHEMA a_schema;
CONSTANT
const : INTEGER := 275;
END_CONSTANT;

ENTITY an_ent;
aa : INTEGER;
END_ENTITY;
END_SCHEMA ;

then an EXPRESS-I rendition could look like:

MODEL some_data;
SCHEMA_DATA a_schema;

CONSTANT
const == 275;
END_CONSTANT;

al = an_ent{aa -> 1;};
a2 = an_ent{aa —> const;};
a3 = an_ent{aa -> 21;};
a4 = an_ent{aa -> 987;7};
END_SCHEMA_DATA;
END_MODEL;

Alternatively, it could be represented via a context as:

CONTEXT a_context;
PARAMETER
paraml : INTEGER :
param2 : INTEGER :
END_PARAMETER;

21;
987;

SCHEMA_DATA a_schema;

CONSTANT
const == 275;
END_CONSTANT;

al = an_ent{aa -> 1;};
a2 = an_ent{aa -> constl};

ISO/CD 10303-12

a3 = an_ent{aa -> parami};
a4 = an_ent{aa -> param2};
END_SCHEMA_DATA;
END_CONTEXT;

12.9.4 Attribute with an entity domain

When the domain of an EXPRESS attribute is an entity, this shall be mapped as an EXPRESS-T
value belonging the entity domain. Typically this is an entity instance reference, but may be a
constant or parameter reference whose domain is the entity domain.

Rules and restrictions:

a) Constant reference shall only be used if both the entity instance and the constant
instance is within the the same schema data instance.

b) Parameter reference shall only be used if the formal parameter and the entity instance
are both within the same CONTEXT.

¢) Parameter reference shall not be used within the scope of a MODEL.

d) Neither parameter nor constant reference shall be used for an inverse attribute.

EXAMPLE 60 — Mapping an entity as attribute:
Given the EXPRESS as

SCHEMA a_schema;
CONSTANT
const : an_ent := an_ent(275);
END_CONSTANT;

ENTITY an_ent;
aa : INTEGER;
END_ENTITY;

ENTITY bdyn;
ab : an_ent;

END_ENTITY;
END_SCHEMA;

then an EXPRESS-I rendition could look like:

CONTEXT a_context;
PARAMETER
param : an_ent := an_ent{aa -> 42;};
END_PARAMETER;
SCHEMA_DATA a_schema;

CONSTANT

55

ISO/CD 10303-12

const == an_ent{aa -> 275;7};
END_CONSTANT;

al an_ent{aa -> 1;7};
bl = bdyn{ab -> @al;};
b2 = bdyn{ab -> const;};
b3 = bdyn{ab -> param;};
END_SCHEMA_DATA;
END_CONTEXT;

12.9.5 Attribute with a type, select or enumeration domain

When the domain of an EXPRESS attribute is a defined data type, a SELECT, or an ENUMER-
ATION, this shall be mapped as an EXPRESS-T value belonging the domain. Typically this is
a either a value (for a defined data type or enumeration) or an entity instance reference (for
a select), but may be an object instance reference, a named value, or a constant or parameter
reference whose domain is compatible with the attribute domain.

Rules and restrictions:

a) Constant reference shall only be used if both the entity instance and the constant

instance is within the the same schema data instance.

b) Parameter reference shall only be used if the formal parameter and the entity instance

are both within the same CONTEXT.

¢) Parameter reference shall not be used within the scope of a MODEL.

d) An object instance reference or a named value shall be used when the actual domain

is not unambiguously determinable from the value.

EXAMPLE 61 — Mapping types as attribute:
Given the EXPRESS as

SCHEMA a_schema;
CONSTANT
zero : REAL := 0.0;
END_CONSTANT;

TYPE size = SELECT(area, radius); END_TYPE;
TYPE area = REAL; END_TYPE;

TYPE radius = REAL; END_TYPE;

TYPE vector = ARRAY [1:3] OF REAL; END_TYPE;

TYPE color = ENUMERATION OF (red, blue, green); END_TYPE;

ENTITY point;
X, ¥y, 2 : REAL;
END_ENTITY;

ENTITY circle;

center : point;
normal : vector;
howbig : size;
shade : color;
END_ENTITY;
END_SCHEMA ;

then an EXPRESS-I rendition could look like:

SCHEMA_DATA a_schema;
CONSTANT
zero == 0.0;

END_CONSTANT;

unit_rad = size{radius{1.0}};

x_axis = vector{[1.0, zero, zeroll};
z_axis = vector{[zero, zero, 1.0]%};
x_color = color{"red"};

ISO/CD 10303-12

pO = point{x -> zero; y -> zero; z —-> zero;’};
pl = point{x -> 1.0; y -> 1.0; z -> 1.03};
cl = circle{center -> Qp0;
normal -> @x_axis;
howbig -> area{PI};
shade -> @x_color;};
c2 = circle{center -> Qp0;
normal -> [1.0, 2.0, 3.0];
howbig -> radius{33.0};
shade -> "blue";};
c¢3 = circle{center -> Qp1i;
normal -> @z_axis;
howbig -> @unit_rad;
shade -> "blue";};

END_SCHEMA_DATA;

12.10 Mapping of supertypes and subtypes

As table 17 shows, there is a one-to-one correspondence between the EXPRESS and EXPRESS-T

super- and sub-typing.

Table 17 — Overview of SUPERTYPE and SUBTYPE mapping.

EXPRESS

EXPRESS-1

SUPERTYPE OF (...)
SUBTYPE OF (...)

BequeathsTo
InheritsFrom

In EXPRESS-T the instantiation of an entity that is

the leaf of a super/subtype tree requires

the instantiation of all its supertypes. An EXPRESS-I supertype instance tree shall always be

57

ISO/CD 10303-12

written out in full.

NOTE - For discussion purposes, consider the portion of the EXPRESS tree below, and in partic-
ular the entity me:

ENTITY
ENTITY parent SUBTYPE OF (grandparent)
SUPERTYPE OF (me ANDOR sibling);

ENTITY me SUBTYPE OF (parent)
SUPERTYPE OF (elder ANDOR younger);

ENTITY elder SUBTYPE OF (me)
SUPERTYPE OF
ENTITY

Me inherits any attributes that its supertypes (e.g parent, grandparent etc) may have. In
turn, me bequeathes both its inherited attributes and its own attributes to its subtypes (e.g
elder, younger and their offspring in turn).

In this tree, an instance of me may or may not also have a sibling. In a general tree there
may be many relations existing that are not in the direct line of ancestry and descent.

For the purposes of this clause, define:

Direct tree instance: An instance of a singly rooted sub/supertype tree where there is a
single direct path, with no branches, from the root to a single leaf.

General tree instance: An instance of a sub/supertype tree which is not a direct tree
instance.

An EXPRESS tree where all SUPERTYPE relations are ONEOF and no SUBTYPE has multiple
SUPERTYPEs is always a direct tree.

An instantiation of a tree that includes ANDOR relations will be direct if all the ANDOR relations
are instantiated as ONEOF relations, otherwise at least some part of the instantiated tree will
not be direct. An instantiation of an AND relation always gives a general tree. An instantiation
of an ENTITY that has multiple SUPERTYPEs always gives a general tree.

In a direct tree instance the full instance path from root to leaf shall be represented.

The following set of rules specify the general tree mapping.

a) The full instance path from root to leaf, including side branches, shall always be
instantiated, according to the rules below.

b) If an instantiated ENTITY is a SUBTYPE of one or more entities, then each of the
SUPERTYPE entities shall be instantiated.

¢) If an ENTITY is the SUPERTYPE of one or more entities (i.e there is an AND relationship
or there is an ANDOR relationship which is instantiated as an AND rather than as a ONEOF
relationship) then the sUPERTYPE and all its simultaneously extant SUBTYPE entities shall
be instantiated.

58

ISO/CD 10303-12

d) If a SUPERTYPE ENTITY is marked as ABSTRACT then an instance of this entity will
always have at least one instance of a SUBTYPE. If the SUPERTYPE is not marked as ABSTRACT
then it may or may not have SUBTVYPE instances, depending on the specific data.

NOTE 1 — The ordering of entity instances in a sub/supertype tree instance is not significant.

EXAMPLE 62 — Tree mapping
Given the following EXPRESS code

ENTITY root
g_name : STRING;
END_ENTITY;

ENTITY node
SUBTYPE OF (grandparent);
p_name : STRING;
END_ENTITY;

ENTITY leafil
SUBTYPE OF (parent);
my_name : STRING;
END_ENTITY;

ENTITY leaf2
SUBTYPE OF (parent)
s_name : STRING;
END_ENTITY;

then two example instances of this structure could be:

INSTANCE 1 INSTANCE 2
gl = root{ g2 = root{
g_name -> ’Gran’; g_name -> ’Gramps’;
SUPOF(@p1);}; SUPOF(@p2);};
pl = node{ p2 = node{
SUBOF (Qg1); SUBOF (Qg2) ;
p_name -> ’Dad’; p_name —> ’Mum";
SUPOF(@c1,@s1);}; SUPOF(@c2);7};
cl = leafi{ c2 = leafi{
SUBOF(@p1); SUBOF (@p2) ;
my_name -> ’self’;}; my_name -> ’ego’;l};
s1 = leaf2{
SUBOF(@p1);

s_name -> ’Sis’;};

The instance labelled 1 is a general tree instance and the one labelled 2 is a direct tree instance.

59

ISO/CD 10303-12

12.10.1 Mapping of redeclared attributes

In an EXPRESS subtype it is possible to redeclare attributes that are inherited from a super-
type. In EXPRESS-T the redeclaration is treated as a constraint on the value of the attribute.
Redeclared attributes shall not be be named within an instance of the subtype.

EXAMPLE 63 — In the following the entity real_point is a subtype of point and redeclares its
attributes to be of type REAL instead of type NUMBER. Their are two corresponding EXPRESS-1
instances. The first instance (i.e p1) is of the supertype only and displays the attribute values as of
type INTEGER. The second instance (i.e the combination of p2 and p_sub) is of subtype real_point.
No attributes are shown in the subtype but the values diplayed in the supertype are constrained to
be of type REAL.

EXPRESS EXPRESS-I
ENTITY point; pl = point{x -> 1;
x : NUMBER; y > 2;};
y : NUMBER;
END_ENTITY; p2 = point{x -> 1.5;
y -> 2.7;
ENTITY real_point SUPQOF (@p_sub) ; };
SUBTYPE OF (point);
SELF\point.x : REAL; p_sub = real_point{SUBOF(@p2);};
SELF\point.y : REAL;
END_ENTITY;

In the case where an inherited explicit attribute is redeclared to be a derived attribute, the rede-
clared attribute shall be treated as a derived attribute in the supertype whenever the redeclaring
subtype is instanced.

EXAMPLE 64 — The following EXPRESS declares a circle to be defined by a centre point and a
radius. A circle_2pt is a kind of circle which is defined by its centre point and a point on the
circumference of the circle. The inherited radius attribute i10s redeclared to be a derived attribute
whose value is given by the distance between the two points.

ENTITY circle;
centre : point;
radius : REAL;

END_ENTITY;

ENTITY circle_2pt

SUBTYPE OF (circle);

circum_pnt : point;
DERIVE

SELF\circle.radius : REAL := distance(SELF\circle.center, circum_pnt);
END_ENTITY,;

In EXPRESS-I instances of circle and circle_2pt could be:

¢l = circle{centre -> [1.0, 0.0];
radius -> 2.0;};

60

c_sup = circle{centre -> [1.0, 0.0];
radius <- 2.0;
SUPOF (@c2) ;};

c2 = circle_2pt{SUBOF(Qc_sup);
circum_pnt -> [1.0, 2.0];};

ISO/CD 10303-12

61

ISO/CD 10303-12

Annex A

(normative)

Syntax description of EXPRESS-I

This annex defines the lexical elements of the language and the grammar rules which these
elements shall obey.

NOTES

1 — Many of the elements of the EXPRESS language are available for use in the definition of test
cases. Those elements of EXPRESS that are not available are related to the definition of EXPRESS
schemas, schema interfacing, and rules. For the convenience of the reader, the EXPRESS elements
are provided here in informative notes. For completeness, the rules relating to the elements of
EXPRESS that are not available have been provided in the form of comments.

2 — As a further guide, productions which pertain to EXPRESS-I only do not use underscores —
each name in an EXPRESS-I production starts with an upper case letter. For example DerivedAttr
would be an EXPRESS-I production while derived_attr would be an EXPRESS production. Also,
the original numbering of the EXPRESS rules has been left intact. The EXPRESS-I specific rules
have been numbered with an appended 1’

3 — This syntax definition will result in ambiguous parsers if taken literally. It has been written to
convey information regarding the use of identifiers. The interpreted identifiers define tokens which
are references to declared identifiers, and therefore should not resolve to simple_id. This requires
a parser developer to provide a lookup table, or similar, to enable identifier reference resolution and
return the required reference token to a grammar rule checker. This approach has been used to
aid the implementors of parsers in that there should be no ambiguity with respect to the use of
identifiers.

A.1 Tokens

The following rules specify the tokens used in EXPRESS-I. Except where explicitly stated in the
syntax rules, no white space or remarks shall appear within the text matched by a single syntax
rule in the following clauses: A.1.1, A.1.2, A.2 and A.3.

A.1.1 Keywords

This subclause gives the rules used to represent the keywords of EXPRESS-I.

0i
1i
2i
3i
4i

62

NOTE — This subclause follows the typographical convention that each keyword is represented by
a syntax rule whose left-hand side is that keyword in uppercase. Since string literals in the syntax
rules are case-insensitive, these keywords may be written in EXPRESS-I source in upper, lower or
mixed case.

CALL = ’call’

CRITERIA = ’criteria’
END_CALL = ’end_call’
END_CRITERIA = ’end_criteria’
END_NOTES = ’end_notes’

bi
61
7i
8i
9i

101
11i
12i
131
141
151
161
171
181
191

201
211
221
231
241

END_
END_
END_
END_
END_

END_SCHEMA_DATA =
END_TEST_CASE = ’end_test_case’

OBJECTIVE = ’end_objective’
PARAMETER = ’end_parameter’

PURPOSE = ’end_purpose’

REALIZATION = ’end_realization’
REFERENCES = ’end_references’

IMPORT = ’import’

NOTES = ’notes’
OBJECTIVE = ’objective’
PARAMETER = ’parameter’
PURPOSE = ’purpose’

REALIZATION =

REFERENCES = ’references’

SCHEMA_DATA =

SUBOF

’subof’

SUPOF = ’supof’
TEST_CASE = ’test_case’
USING = ’using’

WITH = ’with’

’end_schema_data’

’realization’

’schema_data’

ISO/CD 10303-12

NOTE — The following EXPRESS rules, numbered 0 through 118 with the exceptions of numbers

8, 37, 38, 49, 84, 89, 90 and 110, are used by EXPRESS-I.

o

O A NO Ok W=

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26

ABS = ’abs’

ABSTRACT = ’abstract’
ACOS = ’acos’

AGGREGATE = ’aggregate’
ALTAS = ’alias’

AND = ’and’

ANDOR = ’andor’

ARRAY = ’array’

8 AS = ’as’ . >

ASIN = ’asin’

ATAN = ’atan’

BAG = ’bag’

BEGIN = ’begin’ .
BINARY = ’binary’
BLENGTH = ’blength’
BOOLEAN = ’boolean’
BY = by’ .
CASE = ’case’
CONSTANT = ’constant’
CONST_E = ’const_e’

CONTEXT = ’context’

CO0S = ’cos’

DERIVE = ’derive’

DIV = ’div’

ELSE = ’else’

END = ’end’

END_ALIAS = ’end_alias’

63

ISO/CD 10303-12

27 END_CASE = ’end_case’
28 END_CONSTANT = ’end_constant’
29 END_CONTEXT = ’end_context’

30 END_ENTITY = ’end_entity’

31 END_FUNCTION = ’end_function’
32 END_IF = ’end_if’

33 END_LOCAL = ’end_local’

34 END_MODEL = ’end_model’

35 END_PROCEDURE = ’end_procedure’
36 END_REPEAT = ’end_repeat’

< 37 END_RULE = ’end_rule’ . >

< 38 END_SCHEMA = ’end_schema’ . >
39 END_TYPE = ’end_type’

40 ENTITY = ’entity’

41 ENUMERATION = ’enumeration’
42 ESCAPE = ’escape’

43 EXISTS = ’exists’

44 EXP = ’exp’

45 FALSE ’false’

46 FIXED = ’fixed’

47 FOR = ’for’

48 FORMAT = ’format’

< 49 FROM = ’from’ . >

50 FUNCTION = ’function’
51 GENERIC = ’generic’
52 HIBOUND = ’hibound’
53 HIINDEX = ’hiindex’

B4 IF = ’if’

B5 IN = ’in’ .

56 INSERT = ’insert’
57 INTEGER = ’integer’
58 INVERSE = ’inverse’

59 LENGTH = ’length’

60 LIKE ’like’

61 LIST = ’list’

62 LOBOUND = ’lobound’
63 LOINDEX = ’loindex’
64 LOCAL = ’local’

65 LOG = ’log’

66 LOG10 = ’logl0’

67 LOG2 = ’log2’

68 LOGICAL = ’logical’
69 MOD = ’mod’

70 MODEL = ’model’
71 NOT = ’not’

72 NUMBER = ’number’
73 NVL = ’nvl’

74 0DD = ’odd’

75 OF = ’of’

76 ONEOF = ’oneof’

64

77
78
79

80
81
82
83

OPTIONAL = ’optional’
OR = ’or’
OTHERWISE = ’otherwise’

PI = ’pi’
PROCEDURE = ’procedure’
QUERY = ’query’

REAL = ’real’

< 84 REFERENCE = ’reference’

85
86
87
88

REMOVE = ’remove’
REPEAT ’repeat’
RETURN = ’return’
ROLESOF = ’rolesof’

< 89 RULE = ’rule . >

< 90 SCHEMA = ’schema’ . >

91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

SELECT = ’select’

SELF = ’sgelf’

SET = ’set’

SIN = ’sin’
SIZEOF = ’sizeof’

SKIP = ’skip’

SQRT = ’sqrt’
STRING = ’string’
SUBTYPE = ’subtype’

SUPERTYPE = ’supertype’
TAN = ’tan’

THEN = ’then’

TO = ’to’

TRUE = ’true’
TYPE = ’type’
TYPEOF = ’typeof’

UNIQUE = ’unique’
UNKNOWN = ’unknown’
UNTIL = ’until’

< 110 USE = ’use’ . >

111
112
113
114
115
116
117
118

A.1.2 Character classes

USEDIN = ’usedin’
VALUE = ’value’
VALUE_IN = ’value_in’

VALUE_UNIQUE = ’value_unique’

VAR = ’var’
WHERE = ’where’
WHILE = ’while’
X0R = ’xor’

ISO/CD 10303-12

The following rules define various classes of characters which are used in constructing the tokens

in A.2.

NOTE — The following EXPRESS rules, numbered 119 through 135, are used by EXPRESS-I.

65

ISO/CD 10303-12

119 bit = 0’ | ’1°

120 digit = 0’ | 112 | 190 | '3 | 40 | 5 | 'g? |) | '8 | 9
121 digits = digit { digit }
122 encoded_character = octet octet octet octet

123 hex_digit = digit | ’a’ | ’b> | ¢’ | *d’ | e’ | ’£°
124 letter = ’a’ | ’b’> | 2c¢> | *d> | e’ | 2£2 | ’g> | *w> | *i> | *j5° | *k* |
1 | ‘m? | n’ | ’0? | ’P’ | :q: | ry? | ’g? | ' | u? | ry? |
‘w? | 'x? | ’Y’ | 'z
125 lparen_not_star = ’(’ not_star .
126 not_lparen_star = not_paren_star | ’)’
127 not_paren_star = letter | digit | not_paren_star_special .
128 not_paren_star_quote_special = !’ | " | @2 | 2§ | Y | & | 0+ |
:’: | y_ | » | :/: | L) | :;: | 10 | ’y=> | 1y | 10 |
'Q? | :[: | :\: | :]: | PRl | ? 2 |)y ¢ | :{: | :l: | :}: |

PRl

129 not_paren_star_special = not_paren_star_quote_special | ’’?°

130 not_quote = not_paren_star_quote_special | letter | digit | *(’ | ?)’ | ’*°
131 not_rparen = not_paren_star | ’*’ | ’(’

132 not_star = not_paren_star | (’ | ’)’

133 octet = hex_digit hex_digit .

134 special = not_paren_star_quote_special | *(* |) [%’ 1o

135 star_not_rparen = ’*’ not_rparen .

A.2 Lexical elements

The following rules specify how certain combinations of characters are interpreted as lexical
elements within the language.

261 BinaryValue = binary_literal .

26i Description = { \a | \s | \n }

271 EncodedStringValue = ’'"’ { encoded_character | \n } ’"’
281 EnumerationValue = ’!’ simple_id .

29i IntegerValue = [sign] integer_literal .

301 Nil = *?°

31i SignedMathConstant = [sign] MathConstant .

32i SignedRealliteral = [sign] real_literal .

33i SimpleStringValue = \q { (\q \q) | not_quote | \s | \o | \n } \q .

NOTE — The following EXPRESS rules, numbered 136 through 141, are used by EXPRESS-I.

136 binary_literal = ’%’ bit { bit }

137 encoded_string_literal = ’"’ encoded_character { encoded_character } "’
138 integer_literal = digits

139 real_literal = digits *.’ [digits 1 [’e’ [sign] digits]

140 simple_id = letter { letter | digit | °_’ }

141 simple_string_literal = \q { (\q \q) | not;quote [\s | \o } \q .
A.2.1 Remarks

The following rules specify the syntax of remarks in EXPRESS-I.

66

ISO/CD 10303-12

NOTE — The following EXPRESS rules, numbered 142 through 144, are used by EXPRESS-I.

142 embedded_remark = ’(*’ { not_lparen_star | lparen_not_star |
star_not_rparen | embedded_remark } ’*)°

143 remark = embedded_remark | tail_remark .

144 tail_remark = '-=> {\a | \s | \o } \n .

A.3 Interpreted identifiers

The following rules represent identifiers which are known to have a particular meaning (i.e., to
be declared elsewhere as types or functions, etc.).

NOTE — It is expected that identifiers matching these syntax rules are known to an implementation.
How the implementation obtains this information is of no concern to the definition of the language.
One method of gaining this information is multipass parsing: the first pass collects the identifiers
from their declarations, so that subsequent passes are then able to distinguish a variable_ref from
a function_ref, for example.

34i ConstantRef = ConstantId .

35i ContextRef = ContextId .

361 EntityInstanceRef = '@’ EntityInstanceld .

37i EnumerationInstanceRef = ’@’ EnumerationInstanceld .
38i ParameterRef = ParameterId .

39i SelectInstanceRef = '@’ SelectInstanceld .

401 SimpleInstanceRef = '@’ SimpleInstanceld .
41i TypeInstanceRef = '@’ TypeInstanceld .

NOTE — The following EXPRESS rules, numbered 145 through 155, are used by EXPRESS-I.

145 attribute_ref = attribute_id .

146 constant_ref = constant_id .

147 entity_ref = entity_id .

148 enumeration_ref = enumeration_id .
149 function_ref = function_id .

150 parameter_ref = parameter_id .
151 procedure_ref = procedure_id .
152 schema_ref = schema_id .

153 type_label_ref = type_label_id .
154 type_ref = type_id .

155 variable_ref = variable_id .

A.4 Grammar rules

The following rules specify how the previous lexical elements may be combined into constructs
of EXPRESS-1. White space and/or remark(s) may appear between any two tokens in these rules.
The primary syntax rule for EXPRESS-I is ExpressISyntax.

421 ActualParameter = ParameterRef ’:=’ ParmValue ’;’
43i AggregationValue = DynamicAggr | FixedAggr .
441 Assignment = variable_id ’:=’ SelectableInstanceRef ’;’

45i BaseValue = EnumerationValue | SimpleValue .
461 BequeathsTo = SUPOF DynamicEntityRefList ’;°’

67

ISO/CD 10303-12

471
481
491

501
b1i

b2i
b3i

b4i
bbi

561
b7i
581
591

601

611
621
631
641
651

661
671
681
691

701
711

721
731

741
751
761
771

781

791

801
811

68

BooleanValue = TRUE | FALSE .
ConstantBlock = CONSTANT { ConstantSpec } END_CONSTANT °’;°
ConstantId = constant_ref .

ConstantSpec = ConstantId ’==’ ConstantValue ’;’
ConstantValue = AggregationValue | BaseValue | EntityInstanceValue |
NamedInstanceValue | SelectValue | TypeValue .

ContextBlock = CONTEXT ContextId ’;’ ContextBody END_CONTEXT ’;°’

ContextBody = { SchemaReferenceSpec } [FormalParameterBlock]

{ SchemaInstanceBlock | SupportAlgorithm }

ContextId = simple_id .

DerattValue = AggregationValue | BaseValue | EntityInstanceRef |
EntityInstanceValue | EnumerationInstanceValue |
TypeInstanceRef | TypeInstanceValue | TypeValue .

DerivedAttr = RoleName [’<-’ DerattValue] ’;’

DynamicAggr = ’(’ [DynamicList] ’)’

DynamicEntityRefList = °(’ [EntityRefList] ’)°

DynamicList = DynamicMember { ’,’ DynamicMember } .

DynamicMember = AggregationValue | ConstantValue | DerattValue |
ParmValue | ReqattValue | TypeValue .

EntityDomain = [SchemaId ’.’] EntityId .
EntityIld = entity_ref
EntityInstance = EntityInstanceld ’=’ EntityInstanceValue ’;’

EntityInstanceld = simple_id .
EntityInstanceValue = EntityDomain ’{’

[InheritsFrom]

{ ExplicitAttr }

{ DerivedAttr }

{ InverseAttr }

[BequeathsTo] 3}’
EntityRefList = EntityInstanceRef { ’,’ EntityInstanceRef }
EnumerationDomain = [Schemald ’.’] EnumerationId .
EnumerationId = type_ref
EnumerationInstance = EnumerationInstanceld ’=’

EnumerationInstanceValue ’;°’

EnumerationInstanceld = simple_id .
EnumerationInstanceValue = EnumerationDomain
’{’ EnumerationValue ’}’
ExplicitAttr = RequiredAttr | OptionalAttr .
ExpressISyntax = { TestCaseBlock } { ContextBlock } { ModelBlock }
{ SchemalInstanceBlock } { ObjectInstance }

FixedAggr = °[’ FixedList ’]°
FixedList = FixedMember { ’,’ FixedMember } .
FixedMember = DynamicMember | Nil
FormalParameter = ParameterId ’:’ parameter_type

[’:=’ ParmValueDefault] ’;’
FormalParameterBlock = PARAMETER { FormalParameter }

END_PARAMETER ’;°

ImportSpec = IMPORT ’(’ { Assignment } ’)’ ’;°

InheritsFrom = SUBOF DynamicEntityRefList ’;’
InvattValue = DynamicEntityRefList .

821
831
841
851
861
871
881

891

901

911

921

931
941
9bi
961
971
981

991

1001

1011
1021
1031
1041

1051
1061
1071

1081

1091

1101
1111
1121
1131
1141

1151
1161
1171

ISO/CD 10303-12

InverseAttr = RolelNlame [’<-’ InvattValue] ’;’

LogicalValue = logical_literal .

MathConstant = CONST_E | PI

ModelBlock = MODEL ModelId ’;’ ModelBody END_MODEL ’;’

ModelBody = { SchemaInstanceBlock }

Modelld = simple_id .

NamedInstanceValue = EnumerationInstanceValue | SelectInstanceValue |
TypeInstanceValue .

NumberValue = IntegerValue | RealValue .

ObjectInstance = EntityInstance | EnumerationInstance
SelectInstance | TypeInstance | SimpleInstance .
ObjectInstanceRef = EntityInstanceRef | EnumerationInstanceRef |
SelectInstanceRef | TypeInstanceRef |
SimpleInstanceRef .
ObjectiveBlock = OBJECTIVE { TestPurpose } { TestReference }
{ TestCriteria } { TestlNotes } END_OBJECTIVE ’;’
OptattValue = RegattValue | Nil
OptionalAttr = Rolellame ’->’ OptattValue ’;’
ParameterId = simple_id .
ParameterSpec = WITH ’(’ { ActualParameter } ’)’ ’;’
ParmValue = ObjectInstanceRef | expression .
ParmValueDefault = AggregationValue | BaseValue | ConstantRef |
EntityInstanceValue | NamedInstanceValue |
ObjectInstanceRef | SelectValue | TypeValue |
expression .
RealValue = SignedMathConstant | SignedRealLiteral .

ReqattValue = AggregationValue | BaseValue | ConstantRef |
NamedInstanceValue | ObjectInstanceRef | ParameterRef |
SelectValue | TypeValue .
RequiredAttr = RoleName ’->’ (ReqattValue | Nil) ’;’
Rolellame = attribute_ref .
Schemald = schema_ref
SchemalnstanceBlock = SCHEMA_DATA Schemald ’;°
[SchemaInstanceBody] END_SCHEMA_DATA ’;°
SchemaInstanceBody = [ConstantBlock] { ObjectInstance } .
SchemaReferences = SchemaReferenceSpec { SchemaReferenceSpec } .
SchemaReferenceSpec = WITH schema_ref [USING ’(’ resource_ref
{ ’,’ resource_ref } ’)’ 1 ’;’
SelectableInstanceRef = EntityInstanceRef | EnumerationInstanceRef |
SelectInstanceRef | TypeInstanceRef .
SelectDomain = [Schemald .’] SelectId .

SelectId = type_ref

SelectInstance = SelectInstanceld ’=’ SelectInstanceValue ’;’

SelectInstanceld = simple_id .

SelectInstanceValue = SelectDomain ’{’ SelectValue ’}’

SelectValue = EnumerationValue | NamedInstanceValue |
ObjectInstanceRef | TypeValue .

SimpleInstance = SimpleInstanceld ’=’ SimpleValue ’;’

SimpleInstanceld = simple_id .

SimpleValue = BinaryValue | BooleanValue | LogicalValue |
NumberValue | StringValue .

69

ISO/CD 10303-12

118i StringValue = SimpleStringValue | EncodedStringValue .
119i SupportAlgorithm = function_decl | procedure_decl .

1201 TestCaseBlock = TEST_CASE TestCaseld ’;°’
TestCaseBody END_TEST_CASE °’;’

1211 TestCaseBody = SchemaReferences ObjectiveBlock TestRealization
{ SupportAlgorithm }

1221 TestCaseld = simple_id .

123i TestRealization = REALIZATION { local_decl } { UseContextBlock }

{ assignment_stmt } END_REALIZATION ’;’

1241 TestCriteria = CRITERIA Description END_CRITERIA ’;’

1251 TestNotes = NOTES Description END_NOTES ’;°’

1261 TestPurpose = PURPOSE Description END_PURPOSE ’;’

1271 TestReference = REFERENCES Description END_REFERENCES ’;’

1281 TypeDomain = [SchemaId ’.’] Typeld .

1291 Typeld = type_ref

1301 TypeInstance = TypeInstanceld ’=’ TypeIlnstanceValue ’;’

1311 TypeInstanceld = simple_id .

132i TypelnstanceValue = TypeDomain ’{’ TypeValue ’}’

133i TypeValue = AggregationValue | BaseValue | ConstantRef |
EntityInstanceValue | NamedInstanceValue |
ObjectInstanceRef | ParameterRef .

1341 UseContextBlock = CALL ContextRef ’;°

UseContextBody END_CALL ’;°
1351 UseContextBody = [ImportSpec] [ParameterSpec]

NOTE — The following EXPRESS grammar rules, numbered 156 through 318 with the exceptions
of rules 228, 246, 267, 270, 274, 277-281, 302 and 313, are used by EXPRESS-I.

156 abstract_supertype_declaration = ABSTRACT SUPERTYPE [subtype_constraint]

157 actual_parameter_list = ’(’ parameter { ’,’ parameter } ’)’
158 add_like_op = ’+’ | -’ | OR | XOR .
169 aggregate_initializer = [’ [element { ’,’ element } 1 ']’

160 aggregate_source = simple_expression .

161 aggregate_type = AGGREGATE [’:’ type_label] OF parameter_type .
162 aggregation_types = array_type | bag_type | list_type | set_type .
163 algorithm_head = { declaration } [constant_decl] [local_decl]

164 alias_stmt = ALIAS variable_id FOR general_ref { qualifier } ’;’ stmt { stmt }
END_ALIAS ’;°

165 array_type = ARRAY bound_spec OF [OPTIONAL] [UNIQUE] base_type .

166 assignment_stmt = general_ref { qualifier } ’:=’ expression ’;’

167 attribute_decl = attribute_id | qualified_attribute .
168 attribute_id = simple_id .
169 attribute_qualifier = ’.’ attribute_ref .

170 bag_type = BAG [bound_spec] OF base_type .

171 base_type = aggregation_types | simple_types | named_types .
172 binary_type = BINARY [width_spec]

173 boolean_type = BOOLEAN .

174 bound_1 = numeric_expression .

175 bound_2 = numeric_expression .

176 bound_spec = ’[’ bound_1 ’:’ bound_2 ']’

177 built_in_constant = CONST_E | PI | SELF | ’?°

70

178

179

180
181
182

183
184
185
186
187
188
189

190
191
192
193
194

195
196
197
198
199

200
201
202
203

204
205
206
207
208
209

210
211
212

213

214
215
216
217

ISO/CD 10303-12

built_in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS | EXISTS | EXP |
FORMAT | HIBOUND | HIINDEX | LENGTH | LOBOUND | LOINDEX |
LOG | LOG2 | LOG10 | NVL | ODD | ROLESOF | SIN | SIZEOF |
SQRT | TAN | TYPEOF | USEDIN | VALUE | VALUE_IN |
VALUE_UNIQUE .

built_in_procedure = INSERT | REMOVE .

case_action = case_label { ’,’ case_label } ’:’ stmt

case_label = expression .

case_stmt = CASE selector OF { case_action } [OTHERWISE ’:’ stmt]
END_CASE ’;°’

compound_stmt = BEGIN stmt { stmt } END ’;°

constant_body = constant_id ’:’ base_type ’':=’ expression ’;’
constant_decl = CONSTANT constant_body { constant_body } END_CONSTANT °’;’
constant_factor = built_in_constant | constant_ref .

constant_id = simple_id .

constructed_types = enumeration_type | select_type .

declaration = entity_decl | function_decl | procedure_decl | type_decl .

derived_attr = attribute_decl ’:’ base_type ’:=’ expression ’;’
derive_clause = DERIVE derived_attr { derived_attr }
domain_rule = [label ’:’] logical_expression .

element = expression [’:’ repetition]

entity_body = { explicit_attr } [derive_clause] [inverse_clause]
[unique_clause] [where_clause]
entity_constructor = entity_ref ’(’ [expression { ’,’ expression }] ’)’
entity_decl = entity_head entity_body END_ENTITY ’;’
entity_head = ENTITY entity_id [subsuper] ’;°
entity_id = simple_id .

enumeration_id = simple_id .

enumeration_reference = [type_ref ’.’] enumeration_ref .

enumeration_type = ENUMERATION OF ’(’ enumeration_id { ’,’ enumeration_id } ’)’

escape_stmt = ESCAPE ’;°

explicit_attr = attribute_decl { ’,’ attribute_decl } ’:’ [OPTIONAL]
base_type ’;°

expression = simple_expression [rel_op_extended simple_expression]
factor = simple_factor [’#*’ simple_factor]
formal_parameter = parameter_id { ’,’ parameter_id } ’:’ parameter_type .
function_call = (built_in_function | function_ref) [actual_parameter_list]
function_decl = function_head [algorithm_head] stmt { stmt } END_FUNCTION ’;°
function_head = FUNCTION function_id [’(’ formal_parameter

{ ’;’ formal_parameter } ’)’] ’:’ parameter_type ’;’

function_id = simple_id .

generalized_types = aggregate_type | general_aggregation_types | generic_type .

general_aggregation_types = general_array_type | general_bag_type |
general_list_type | general_set_type .

general_array_type = ARRAY [bound_spec] OF [OPTIONAL] [UNIQUE]

parameter_type .

general_bag_type = BAG [bound_spec] OF parameter_type .

general_list_type = LIST [bound_spec] OF [UNIQUE] parameter_type .

general_ref = parameter_ref | variable_ref

general_set_type = SET [bound_spec] OF parameter_type .

71

ISO/CD 10303-12

72

218
219

220

221
222
223
224
225
226
227

generic_type = GENERIC [’:’ type_label]
group_qualifier = ’\’ entity_ref

if_stmt = IF logical_expression THEN stmt { stmt } [ELSE stmt { stmt }]

END_IF ’;°
increment = numeric_expression .
increment_control = variable_id ’:=’ bound_1 TO bound_2 [BY increment]

index = numeric_expression .

index_1 = index .

index_2 = index .

index_qualifier = ’[’ index_1 [’:’ index_2] ’]°
integer_type = INTEGER .

< 228 interface_specification = reference_clause | use_clause . >

229

230
231
232
233
234

235
236
237
238

239
240

241
242
243
244
245

interval = ’{’ interval_low interval_op interval_item interval_op
interval_high ’}’

interval_high = simple_expression .

interval_item = simple_expression .

interval_low = simple_expression .

interval_op = <’ | <=’

inverse_attr = attribute_decl ’:’ [(SET | BAG) [bound_spec] OF] entity_ref

FOR attribute_ref ’;°’

inverse_clause = INVERSE inverse_attr { inverse_attr } .

label = simple_id .

list_type = LIST [bound_spec] OF [UNIQUE] base_type .

literal = binary_literal | integer_literal | logical_literal | real_literal |
string_literal .

local_decl = LOCAL local_variable { local_variable } END_LOCAL ’;’

local_variable = variable_id { ’,’ variable_id } ’:’ parameter_type
[>:=’ expression] ’;’

logical_expression = expression .

logical_literal = FALSE | TRUE | UNKNOWN .

logical_type = LOGICAL .

multiplication_like_op = ’*°> | /> | DIV | MOD | AND | ’||°

named_types = entity_ref | type_ref

< 246 named_type_or_rename = named_types [AS (entity_id | type_id) 1 . >

247
248
249

250
251
252
253
254
255
256
257

258
259

260

null_stmt = ’;°’ .
number_type = NUMBER .
numeric_expression = simple_expression .

one_of = ONEOF ’(’ supertype_expression { ’,’ supertype_expression } ’)’
parameter = expression .
parameter_id = simple_id .
parameter_type = generalized_types | named_types | simple_types
population = entity_ref
precision_spec = numeric_expression .
primary = literal | (qualifiable_factor { qualifier })
procedure_call_stmt = (built_in_procedure | procedure_ref)
[actual_parameter_list] ’;°

procedure_decl = procedure_head [algorithm_head] { stmt } END_PROCEDURE ’;’
procedure_head = PROCEDURE procedure_id [*(’ [VAR] formal_parameter

{ ;> [VAR] formal_parameter } ’)’] ’;’

procedure_id = simple_id .

ISO/CD 10303-12

261 qualifiable_factor = attribute_ref | constant_factor | function_call |

general_ref | population .
262 qualified_attribute = SELF group_qualifier attribute_qualifier .

263 qualifier = attribute_qualifier | group_qualifier | index_qualifier .

264 query_expression = QUERY ’(’ variable_id ’<*’ aggregate_source ’|’
logical_expression ’)’

265 real_type = REAL [’(’ precision_spec ’)’]

266 referenced_attribute = attribute_ref | qualified_attribute .

< 287 reference_clause = REFERENCE FROM schema_ref [’(’ resource_or_rename

{ ’,’ resource_or_rename } ’)’ 1 ’;’ . >
268 rel_op = <’ | > | <=2 | >=2 | <> | 0= | > | =
269 rel_op_extended = rel_op | IN | LIKE .

< 270 rename_id = constant_id | entity_id | function_id | procedure_id |
type_id . >

271 repeat_control = [increment_control] [while_control] [until_control]

272 repeat_stmt = REPEAT repeat_control ’;’ stmt { stmt } END_REPEAT ’;’
273 repetition = numeric_expression .
< 274 resource_or_rename = resource_ref [AS rename_id] . >

275 resource_ref = constant_ref | entity_ref | function_ref | procedure_ref |

type_ref
276 return_stmt = RETURN [’(’ expression ’)’] ?;°
< 277 rule_decl = rule_head [algorithm_head] { stmt } where_clause

END_RULE ’;’ . >
< 278 rule_head = RULE rule_id FOR ’(’ entity_ref { ’,’ entity_ref } ’)°
300 >

< 279 rule_id = simple_id . >

< 280 schema_body = { interface_specification } [constant_decl]

{ declaration | rule_decl } . >

< 281 schema_decl = SCHEMA schema_id ’;’ schema_body END_SCHEMA ’;’ . >

282 schema_id = simple_id .

283 selector = expression .

284 select_type = SELECT ’(’ named_types { ’,’ named_types })’

285 set_type = SET [bound_spec] OF base_type .

286 sign = '+’ | =’

287 simple_expression = term { add_like_op term } .

288 simple_factor = aggregate_initializer | entity_constructor |
enumeration_reference | interval |query_expression |
([unary_op] (’(’ expression ’)’ | primary))

289 simple_types = binary_type | boolean_type | integer_type | logical_type |

number_type | real_type | string_type .

290 skip_stmt = SKIP ’;’

291 stmt = alias_stmt | assignment_stmt | case_stmt | compound_stmt | escape_stmt |

if_stmt | null_stmt |procedure_call_stmt | repeat_stmt | return_stmt |

skip_stmt
292 string_literal = simple_string_literal | encoded_string_literal .
293 string_type = STRING [width_spec]
294 subsuper = [supertype_constraint] [subtype_declaration]
295 subtype_constraint = OF ’(’ supertype_expression ’)’

296 subtype_declaration = SUBTYPE OF ’(’ entity_ref { ’,’ entity_ref } ’)’
297 supertype_constraint = abstract_supertype_declaration | supertype_rule .

298 supertype_expression = supertype_factor { ANDOR supertype_factor }

73

ISO/CD 10303-12

299

300
301

< 302 syntax

304
305
306
307
308
309

310
311
312

314

supertype_factor = supertype_term { AND supertype_term }

supertype_rule = SUPERTYPE subtype_constraint .

supertype_term = entity_ref | one_of | ’(’ supertype_expression ’)’
schema_decl { schema_decl } . >

term = factor { multiplication_like_op factor }
type_decl = TYPE type_id ’=’ underlying_type ’;’
type_id = simple_id .

type_label = simple_id | type_label_ref .

[where_clause] END_TYPE ’;’

unary_op = ’+’ | -’ | NOT .

underlying _type = constructed_types | aggregation_types | simple_types |
type_ref .

unique_clause = UNIQUE unique_rule ’;’ { unique_rule ’;’ }

unique_rule = [label ’:’] referenced_attribute { ’,’ referenced_attribute }

until_control = UNTIL logical_expression .
< 313 use_clause = USE FROM schema_ref [’(’ named_type_or_rename
{ ’,’ named_type_or_rename } ’)’] ’;’ . >
variable_id = simple_id .
where_clause = WHERE domain_rule ’;’ { domain_rule ’;’ }

315
316

while_control = WHILE logical_expression .

317 width = numeric_expression .

318 width_spec = ’(’ width ’)’ [FIXED]
A.5 Cross reference listing
The production on the left is used in the productions indicated on the right.

0i CALL | 134i
1i CRITERIA | 1241
2i END_CALL | 134i
3i END_CRITERIA | 1241
4i END_NOTES | 125i
bi END_OBJECTIVE [92i
6i END_PARAMETER | 781
7i END_PURPOSE | 1261
8i END_REALIZATION | 123i
9i END_REFERENCES | 1271
101 END_SCHEMA_DATA | 104i
11i END_TEST_CASE | 1201
12i IMPORT | 791
13i NOTES | 125i
14i OBJECTIVE [92i
151 PARAMETER | 781
161 PURPOSE | 1261
171 REALIZATION | 123i
181 REFERENCES | 1271
191 SCHEMA_DATA | 104i
20i SUBOF | 80i
21i SUPOF | 461
221 TEST_CASE | 1201

74

231
241
2bi1
261
271
281
291

301
311
321
331
341
3bi1
361
371
381
391

401
411
421
431
4413
451
461
471
481
491

501
b1i
b2i
b3i
b4i
bbi
561
b7i
581
591

601
611
621
631
641
651
661
671
681
691

USING

WITH

BinaryValue
Description
EncodedStringValue
EnumerationValue
IntegerValue

Nil
SignedMathConstant
SignedRealLiteral
SimpleStringValue
ConstantRef
ContextRef
EntityInstanceRef

EnumerationInstanceRef

ParameterRef
SelectInstanceRef

SimpleInstanceRef
TypeInstanceRef
ActualParameter
AggregationValue
Assignment
BaseValue
BequeathsTo
BooleanValue
ConstantBlock
ConstantId

ConstantSpec
ConstantValue
ContextBlock
ContextBody
ContextId
DerattValue
DerivedAttr
DynamicAggr
DynamicEntityRefList
DynamicList

DynamicMember
EntityDomain
Entityld
EntityInstance
EntityInstanceld
EntityInstanceValue
EntityRefList
EnumerationDomain
EnumerationId
EnumerationInstance

1071
961
1171
1241
1181
451
891

481
991
991
1181
981
1341
bbi
911
421
911

911
bbi
961
b1i
791
b1i
651
1171
1051
341

481
501
731
b2i
3bi1
561
651
431
451
b7i

591
651
611
901
361
b1i
581
711
671
901

1071

1251

711

761

1001

661

1081

1001

1081

911

bbi

bbi

501

601

b2i
601

801

761
881

631
bbi

881

1261

1141

931

1331

911

1331

1081

601

981

821

631

1271

1011

1081

981 1001 1331

1001 1331

981 1331

ISO/CD 10303-12

75

ISO/CD 10303-12

701
711
721
731
741
751
761
771
781
791

801
811
821
831
841
851
861
871
881
891

901
911
921
931
941
9bi
961
971
981
991

1001
1011
1021
1031
1041
1051
1061
1071
1081
1091

1101
1111
1121
1131
1141
1151
1161
1171

76

EnumerationInstanceld

EnumerationInstanceValue

ExplicitAttr
ExpressISyntax
FixedAggr

FixedList
FixedMember
FormalParameter
FormalParameterBlock
ImportSpec

InheritsFrom
InvattValue
Inverselttr
LogicalValue
MathConstant
ModelBlock
ModelBody

ModelId
NamedInstanceValue
NumberValue

ObjectInstance
ObjectInstanceRef
ObjectiveBlock
OptattValue
OptionallAttr
ParameterId
ParameterSpec
ParmValue
ParmValueDefault
RealValue

ReqattValue
RequiredAttr
RoleName

Schemald
SchemaInstanceBlock
SchemalInstanceBody
SchemaReferences
SchemaReferenceSpec
SelectableInstanceRef
SelectDomain

SelectId
SelectInstance
SelectInstanceld
SelectInstanceValue
SelectValue
SimpleInstance
SimpleInstanceld
SimpleValue

371
bbi
651

431
741
751
781
b3i
1351

651
821
651
481
481
731
851
381
b1i
1171

731
971
1211
941
721
381
1351
421
771
891

601
721
561
611
b3i
1041
1211
b3i
4413
881

1091
901
391
881
b1i
901
401
451

691
691

1171

851
981

1051
981

771

601

931

821

671

731

1061

1131

1111
1111
981

1151
1151

881

1001 1141 1331

1001 1141 1331

1011
941 1011

1041 1091 128i
861

1001 1131

1181
1191

1201
1211
1221
1231
1241
1251
1261
1271
1281
1291

1301
1311
1321
1331
1341
1351

© 0 N Ok WN=O

10
11
12
13
14
15
16
17
18
19

20
21
22
23
24
25
26
27
28

StringValue
SupportAlgorithm

TestCaseBlock
TestCaseBody
TestCaseld
TestRealization
TestCriteria
TestNotes
TestPurpose
TestReference
TypeDomain
Typeld

TypeInstance
TypeInstanceld
TypeInstanceValue
TypeValue
UseContextBlock
UseContextBody

ABS
ABSTRACT
ACOS
AGGREGATE
ALIAS

AND

ANDOR
ARRAY

ASIN

ATAN

BAG
BEGIN
BINARY
BLENGTH
BOOLEAN
BY

CASE
CONSTANT
CONST_E

CONTEXT

Cc0s

DERIVE

DIV

ELSE

END
END_ALIAS
END_CASE
END_CONSTANT

1171
53i 1211
731

1201

1201

1211
921
921
921
921
871 1321
1281

901
411
bbi
b1i
1231
1341

1301
881 1
bbi

178
156
178
161
164
244 299
298
165 213

178

178

170 214 234
183

172

178

173

222

182

185 481

177 841

b2i
178
191
244
220
183
164
182
185 481

301
601

981 1001 114i 132i

ISO/CD 10303-12

7

ISO/CD 10303-12

78

29

30
31
32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
b7
58
59

60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75

END_CONTEXT

END_ENTITY
END_FUNCTION
END_IF
END_LOCAL
END_MODEL
END_PROCEDURE
END_REPEAT

END_TYPE

ENTITY
ENUMERATION
ESCAPE
EXISTS

EXP

FALSE

FIXED

FOR

FORMAT

FUNCTION
GENERIC
HIBOUND
HIINDEX
IF

In
INSERT
INTEGER
INVERSE
LENGTH

LIKE
LIST
LOBOUND
LOCAL
LOG
LOG10
LOG2
LOGICAL
LOINDEX
MOD

MODEL
NOT
NUMBER
NVL
0DD

OF

b2i

196
208
220
239
851
258
272

304

197
201
202
178
178
242 471
318
164 234
178

209
218
178
178
220
269
179
227 81i
235
178

269
215 237
178
239
178
178
178
243
178
244

851
308
248
178
178
161 165 170 182 201 213 214 215 217 234 237 285 295

76
77
78
79

80
81
82
83
84
85
86
87
88
89

90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109

110
111
112
113
114
115
116
117
118
119

120
121

ONEOF
OPTIONAL
OR
OTHERWISE

PI
PROCEDURE
QUERY
REAL

REMOVE
REPEAT
RETURN
ROLESOF

SELECT
SELF
SET

SIN
SIZEOF
SKIP
SQRT
STRING
SUBTYPE

SUPERTYPE
TAN

THEN

TO

TRUE

TYPE
TYPEOF
UNIQUE
UNKNOWN
UNTIL

USEDIN

VALUE
VALUE_IN
VALUE_UNIQUE
VAR

WHERE

WHILE

X0R

bit

digit
digits

296
250
165 203 213
158
182

177 841
259
264
265

179
272
276
178

284

177 262

217 234 285
178

178

290

178

293

296

156 300

178

220

222

242 471

304

178

165 213 215 237 310
242

312

178
178
178
178
259
315
316
158
136

121 123 127 130 140
138 139

ISO/CD 10303-12

79

ISO/CD 10303-12

122 encoded_character [137 271

123 hex_digit | 133

124 letter | 127 130 140
125 lparen_not_star | 142

126 not_lparen_star | 142

127 not_paren_star | 126 131 132

128 not_paren_star_quote_special | 129 130 134

129 not_paren_star_special [127

130 not_quote | 141 331

131 not_rparen | 135

132 not_star | 125

133 octet [122

134 special [

135 star_not_rparen | 142

136 binary_literal | 238 251

137 encoded_string_literal | 292

138 integer_literal | 238

139 real_literal | 238

140 simple_id | 168 187 198 199 210 236 252 260 282 305 307 314
281 b4i 64i 70i 87i 95i 112i 116i 122i 1313

141 simple_string_literal [292

142 embedded_remark | 142 143

143 remark [

144 tail_remark | 143

145 attribute_ref | 169 234 261 266 102i

146 constant_ref | 186 275 49i

147 entity_ref | 195 219 234 245 254 275 296 301 62i

148 enumeration_ref | 200

149 function_ref | 207 275

150 parameter_ref | 2186

151 procedure_ref | 257 275

152 schema_ref | 1031 1071

153 type_label_ref | 306

154 type_ref | 200 245 275 309 68i 110i 1291

155 variable_ref | 2186

156 abstract_supertype_declaration | 297

157 actual_parameter_list | 207 257
158 add_like_op | 287

159 aggregate_initializer | 288

160 aggregate_source | 264

161 aggregate_type [211

162 aggregation_types [171 309
163 algorithm_head | 208 258
164 alias_stmt | 291

165 array_type | 162

166 assignment_stmt [291 123i
167 attribute_decl | 190 203 234
168 attribute_id | 145 167

80

169

170
171
172
173
174
175
176
177
178
179

180
181
182
183
184
185
186
187
188
189

190
191
192
193
194
195
196
197
198
199

200
201
202
203
204

205
206
207
208
209

210
211
212
213
214

attribute_qualifier

bag_type

base_type
binary_type
boolean_type
bound_1

bound_2

bound_spec
built_in_constant
built_in_function
built_in_procedure

case_action
case_label
case_stmt
compound_stmt
constant_body
constant_decl
constant_factor
constant_id
constructed_types
declaration

derived_attr
derive_clause
domain_rule
element
entity_body
entity_constructor
entity_decl
entity_head
entity_id
enumeration_id

enumeration_reference
enumeration_type
escape_stmt
explicit_attr
expression

factor
formal_parameter
function_call
function_decl
function_head

function_id
generalized_types

general_aggregation_types | 211

general_array_type
general_bag_type

262

162
165
289
289
176
176
165
186
207
257

182
180
291
291
185
163
261
146
309
163

191
194
315
159
196
288
189
196
147
148

288
188
291
194
166
971
303
209
261
189
208

149
253

212
212

ISO/CD 10303-12

263

170 184 190 203 237 285

222
222
170 213 214 215 217 234 237 285

184

197
201

181 184 190 193 195 240 241 251 276 283 288
981

259

1191

209

81

ISO/CD 10303-12

215 general_list_type | 212

216 general_ref | 164 166 261
217 general_set_type | 212

218 generic_type [211

219 group_qualifier | 262 263

220 if_stmt | 291

221 increment [222

222 increment_control [271

223 index | 224 225

224 index_1 | 226

225 index_2 | 226

226 index_qualifier | 263

227 integer_type | 289

228

229 interval | 288

230 interval_high [229

231 interval_item [229

232 interval_low [229

233 interval_op [229

234 inverse_attr | 235

235 inverse_clause [194

236 label | 192 311

237 list_type | 162

238 literal | 256

239 local_decl | 163 1231
240 local_variable [239

241 logical_expression | 192 220 264 312 316
242 logical_literal | 238 831

243 logical_type | 289

244 multiplication_like_op | 303

245 named_types | 171 253 284
246

247 null_stmt | 291

248 number_type | 289

249 numeric_expression | 174 175 221 223 255 273 317
250 one_of | 301

251 parameter | 157

252 parameter_id | 150 208

253 parameter_type | 161 206 209 213 214 215 217 240 77i
254 population | 261

255 precision_spec | 265

256 primary | 288

257 procedure_call_stmt | 291

258 procedure_decl | 189 119i
259 procedure_head | 258

260 procedure_id | 151 259

261 qualifiable_factor | 256

82

262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287
288
289

290
291
292
293
294
295
296
297
298
299

300
301
302
303
304
305
306
307
308
309

qualified_attribute
qualifier
query_expression
real_type
referenced_attribute

rel_op
rel_op_extended

repeat_control
repeat_stmt
repetition

resource_ref
return_stmt

schema_id
selector
select_type
set_type

sign
simple_expression
simple_factor
simple_types

skip_stmt

stmt

string_literal
string_type

subsuper
subtype_constraint
subtype_declaration
supertype_constraint
supertype_expression
supertype_factor

supertype_rule
supertype_term

term

type_decl
type_id
type_label
type_label_id
unary_op
underlying_type

167
164
288
289
311

269
204

272
291
193

1071
291

152
182
188
162
139
160
205
171

291
164
238
289
197
156
294
294
250
298

297
299

287
189
154
161
153
288
304

266
166 256

291 31i 321
204 230 231 232 249

253 309

180 182 183 208 220 258 272

300

295 301

304
218
306

ISO/CD 10303-12

83

ISO/CD 10303-12

310
311
312
313
314
315
316
317
318

84

unique_clause
unique_rule
until_control

variable_id
where_clause
while_control
width
width_spec

194
310
271

155 164 222 240 264 44i
194 304

271

318

172 293

ISO/CD 10303-12

Annex B

(normative)

Protocol implementation conformance statement (PICS)

Is this implementation an EXPRESS-I language parser/verifier? If so, answer the questions
provided in B.1.

B.1 EXPRESS-I language parser

For which level is support claimed:

|:| Level 1 — Reference checking;
|:| Level 2 — Type checking;
|:| Level 3 — Value checking;
[] Level 4 — Complete checking.

(Note: In order to claim support for a given level, all lower levels must also be supported.)

What is the maximum integer value [integer_literal]?: AP
What is the maximum real precision [real literal]?: AP
What is the maximum real exponent [real literal]?: AP

What is the maximum string width (characters) [sim-o
ple_string_literal]?:

What is the maximum string width (octets)
[encoded _string literal]?:

What is the maximum binary width (bits) [binary_literal]?: e

Do you have a limit on the number of unique identifiers which:
are declared? If so, what is your limit?:

Do you have a limit on the number of characters used as an:
identifier? If so, what is your limit?:

Do you have a limit on the scope nesting depth? If so, whatiso .
your limit?:

How do you represent the standard constant ‘77
[built_in_constant]?:

85

ISO/CD 10303-12

Annex C

(normative)

Information object registration

In order to provide for unambiguous identification of an information object in an open system,
the object identifier

{ iso standard 10303 part(12) version(1) }

is assigned to this part of ISO 10303. The meaning of this value is defined in ISO 8824-1, and
is described in ISO 10303-1.

86

ISO/CD 10303-12

Annex D

(informative)

Language specification syntax

The notation used to present the syntax of the EXPRESS-I language is defined in ISO 10303-11.
It is repeated here for informational purposes.

The full syntax for the EXPRESS-I language is given in normative annex A. Portions of those
syntax rules are reproduced in various clauses to illustrate the syntax of a particular statement.
Those portions are not always complete so it will sometimes be necessary to consult annex A
for the missing rules. The syntax portions within this International Standard are presented in
a box. Each rule within the syntax box has a unique number toward the left margin for use in
cross references to other syntax rules.

D.1 The syntax of the specification

The syntax of EXPRESS (and EXPRESS-I) is defined in a derivative of Wirth Syntax Notation
(WSN); see annex G under [2] for a reference.

The notational conventions and WSN defined in itself are given below.

syntax = { production } .

production = identifier ’=’ expression ’.’

expression = term { ’|’ term } .

term = factor { factor } .

factor = identifier | literal | group | option | repetition .
identifier = character { character } .

literal = 7?77 character { character } ’’7°

group = ’(’ expression ’)’

option = [’ expression ’]°

repetition = ’{’ expression ’}’

b

— The equal sign =’ indicates a production. The element on the left is defined to be the
combination of the elements on the right. Any spaces appearing between the elements of a
production are meaningless unless they appear within a literal. A production is terminated
by a period ’.’.

— The use of an identifier within a factor denotes a nonterminal symbol which appears
on the left side of another production. An identifier is composed of letters, digits and the
underscore character. The keywords of the language are represented by productions whose
identifier is given in uppercase characters only.

— The word literal is used to denote a terminal symbol which cannot be expanded further.
A literal is a case independent sequence of characters enclosed in apostrophes. Character,
in this case, stands for any character as defined by ISO 10646 cells 21-7E in group 00, plane
00, row 00. For an apostrophe to appear in a literal it must be written twice.

87

ISO/CD 10303-12

— The semantics of the enclosing braces are defined below:

e curly braces *{ }’ indicates zero or more repetitions;
e square brackets >[]’ indicates optional parameters;

e parenthesis > ()’ indicates that the group of productions enclosed by parenthesis
shall be used as a single production;

e vertical bar |’ indicates that exactly one of the terms in the expression shall be

chosen.

NOTE — For the purposes of this document, one further construct has been added the the meta-
language above. A comment is any text enclosed within angle brackets. For example, < A comment >

1s a comment.

EXAMPLE 65 — The syntax for a real literal is as follows:

Syntax:

190 real_literal = integer_literal ’.’ [integer_literal]
[’e’ [sign] integer_literal]
163 integer_literal = digit { digit } .

The complete syntax definition (annex A) contains the definitions for sign and digit.

EXAMPLE 66 — Following the syntax given in example 65, the following alternatives are possible:
a) 123.
b) 123.456
) 123.456e7

d) 123.456E-7

D.2 Special character notation

The following notation is used to represent entire character sets and certain special characters

which are difficult to display.
— \a represents characters in cells 21-7E of row 00, plane 00, group 00 of ISO 10646;

— \n represents a newline (system dependent);
— \q is the quote (apostrophe) (’) character and is contained within \a;

— \s is the space character;

88

ISO/CD 10303-12

— \o represents characters in cells 00-1F and 7F of row 00, plane 00, group 00 of ISO
10646.

89

ISO/CD 10303-12

Annex E

(informative)

Example test cases

This annex provides some examples of test cases. These examples are not intended to be
indicative of any normative test cases that may be given in other parts of this International
Standard and are given purely for illustrative purposes.

First we start with a simple EXPRESS sSCHEMA against which the test cases are specified.

*)
SCHEMA people;

TYPE name : STRING; END_TYPE;

ENTITY person;

named : name;

children : SET [0:7] OF person;
END_ENTITY;

ENTITY male
SUBTYPE OF (person);
END_ENTITY;

ENTITY female
SUBTYPE OF (person);
END_ENTITY;

ENTITY married;
husband : male;
wife : female;

END_ENTITY;

END_SCHEMA ;
(*

E.1 Test case 1

This test case specifies that three instances of person are to be created.

*)
TEST_CASE test_case_1;

WITH people USING(person);

OBJECTIVE
PURPOSE To test the creation of supertypes with no subtypes. END_PURPOSE;
REFERENCES None. END_REFERENCES;
CRITERIA Three instances of childless PERSON shall be created. END_CRITERIA;
NOTES None. END_NOTES;

END_OBJECTIVE;

90

ISO/CD 10303-12

REALIZATION

LOCAL -- define variables of type person
pl : person;
P2 : person;
p3 : person;

END_LOCAL;
pl := person(’Alpha’, []); -- create instances of person
p2 := person(’Beta’, [1);

p3 person(’Gamma’, [1);

END_REALIZATION;
END_TEST_CASE;
(*
One possible rendition of the data resulting from this test case is:

*)
MODEL case_1;
SCHEMA_DATA people;

nl = name{’Alpha’};
n2 = name{’Beta’};
n3 = name{’Gamma’};

pl = person{named -> 0ni;
children -> ();
SUPOF();};

p2 = person{named -> 0n2;
children -> ();
SUPOF();};

p3 = person{named -> 0n3;
children -> ();
SUPOF();};

END_SCHEMA_DATA;
END_MODEL;
(*

For future use, the following context is defined, based on the test case.

*)
CONTEXT context_1;
SCHEMA_DATA people;

pl = person{named -> ’Alpha’;
children -> ();
SUPOF();};

91

ISO/CD 10303-12

p2 = person{named -> ’Beta’;
children -> ();
SUPOF();};

p3 = person{named -> ’Gamma’;
children -> ();
SUPOF();};

END_SCHEMA_DATA;
END_CONTEXT;
(*

E.2 Test case 2

This test case creates a male and female person.

*)
TEST_CASE test_case_2;

WITH people USING(male, female);

OBJECTIVE
PURPOSE To test the creation of subtypes. END_PURPOSE;
CRITERIA One instance of a childless MAN and one of a childless
FEMALE shall be created. END_CRITERIA;
END_OBJECTIVE;

REALIZATION
LOCAL -- define variables of the required types
ml : male;
f1 : female;
END_LOCAL;
ml := person(’Adam’, [])||male(); —— create male instance
f1 := person(’Eve’), [1)|lfemale(); -- create female instance

END_REALIZATION;
END_TEST_CASE;
(*
One possible rendition of the data resulting from this test case is:

*)
MODEL case_2;
SCHEMA_DATA people;

p4 = person{named -> ’Adam’;
children -> ();
SUPOF(@m1) ;3};

ml = male{SUBOF(@p4);3};

92

ISO/CD 10303-12

person{named -> ’Eve’;
children -> ();
SUPOF(@f1);};

p5

f1 = female{SUBOF(@p5);l};

END_SCHEMA_DATA;
END_MODEL;
(*

For future use, the following parameterised context is also created.
*)
CONTEXT context_2;

WITH people USING(person);

PARAMETER
cl : SET OF person := (); -- parameter default is the empty set
c2 : SET OF person := ();

END_PARAMETER;

SCHEMA_DATA people;

p4 = person{named -> ’Adam’;
children -> ci; —-- children attribute is parameterised
SUPOF (@m1);3};

ml = male{SUBOF(@p4);3};

p5 = person{named -> ’Eve’;

children -> c2;
SUPOF (@f1);};

f1 = female{SUBOF(@p5);};
END_SCHEMA_DATA;

END_CONTEXT;
(*

E.3 Test case 3

This test creates an instance of a married entity.

*)
TEST_CASE test_case_3;

WITH people USING(married);
OBJECTIVE

PURPOSE To test the creation of an entity with attributes
of type entity. END_PURPOSE;

93

ISO/CD 10303-12

CRITERIA One instance of a MARRIED entity shall be created. END_CRITERIA;
END_OBJECTIVE;

REALIZATION

LOCAL -- define variables of required types
reg : married;
hl : male;
wl : female;

END_LOCAL;

CALL context_2; —-— use data from CONTEXT context_2
IMPORT(h1 := @mi1;
wl := @f1;);
END_CALL;

reg := married(hl, wil); —— create instance of married
END_REALIZATION;

END_TEST_CASE;
(*

One possible rendition of the data resulting from this test case is:

*)
MODEL case_3;
SCHEMA_DATA people;

p4 = person{named -> ’Adam’;
children -> ();
SUPOF(@h1);};

hi = male{SUBOF(@p4);3};

p5 = person{named -> ’Eve’;
children -> ();
SUPOF (@w1);1};

wl = female{SUBOF(@p5);};

reg = married{husband -> @hi;
wife -> owl;};

END_SCHEMA_DATA;

END_MODEL;
(*

E.4 Test case 4

This test case assembles a set of pre-existing parameterised data and also creates new data.

*)

94

ISO/CD 10303-12

TEST_CASE test_case_4;
WITH people USING(person, male, female, married);

OBJECTIVE
PURPOSE To test the creation of a married couple with
children. END_PURPOSE;
CRITERIA Three instances of PERSON shall be created.
One instance each of MALE and FEMALE with children shall
be created.
One instance of a MARRIED entity shall be created.
END_CRITERIA;
END_OBJECTIVE;

REALIZATION

LOCAL -- define variables of the required types
pl : person;
P2 : person;
p3 : person;
ml : male;
f1 : female;
reg : married;
END_LOCAL;

CALL context_1;

IMPORT (pl := @pi; -— use data from CONTEXT context_1
P2 := 0p2;
pP3 := ©p3;);
END_CALL;

CALL context_2;

IMPORT(m1 := @m1; —-— use data from CONTEXT context_2
f1 := @f1;);
WITH(c1 := [p1, p3]; -— set parameter values
c2 := [p2, p3]1;);
END_CALL;
reg := married(mil, f1); —— create married instance

END_REALIZATION;
END_TEST_CASE;
(*
One possible rendition of the data resulting from this test case is:

*)
MODEL case_4;
SCHEMA_DATA people;

nl
n2

nameq{’Alpha’};
name{’Beta’’};

95

ISO/CD 10303-12

n3

p1

P2

p3

p4

ml

p5

f1

name{’Gamma’};

person{named -> @ni;
children -> ();
SUPOF();};
person{named -> @n2;
children -> ();
SUPOF();};
person{named -> @n3;
children -> ();
SUPOF();};
person{named -> ’Adam’;

children -> (@pil, @p3);
SUPOF(@m1);};

male{SUBOF(Qp4);};
person{named -> ’Eve’;
children —-> (@p2, @p3);

SUPOF(@f1);};

female{SUBOF(@p5);};

reg = married{husband -> @mi;

wife -> @f1;};

END_SCHEMA_DATA;
END_MODEL;

(*

96

ISO/CD 10303-12

Annex F

(informative)

Usage notes

This annex discusses some of the potential uses of the EXPRESS-T language.

In Object-Oriented terms, an EXPRESS entity would be called a class, and an instance of a class
is termed an object; one object may reference another object. EXPRESS distinguishes between
entities and types (i.e the ENUMERATION, SELECT and the defined data TYPE) as entities may be
subtyped whereas types cannot be subtyped. The physical file, as defined in ISO 10303 Part 21,
certainly distinguishes between entities and types in that only entity instances may appear in
the file — type values are embedded within the attribute values and are not referenceable. EX-
PRESS-T treats entity instances as objects in the OO sense. It also allows types to be treated
as objects, in that they can be instantiated and referenced; alternatively, it allows types to be
treated in the same manner as in the physical file in that their values can be embedded.

F.1 EXPRESS data examples

The simplest use of EXPRESS-I is as a paper exercise in displaying data populated examples of
EXPRESS defined constructs. The language allows the display of entity instances as referenceable
objects. Types instances may also be displayed as referenceable objects, or they may appear
as unreferenceable values within other objects’ values. Examples given in this document show
both forms of type instantiation.

Values of explicit entity attributes are required. The values of derived or inverse attributes need
not be displayed, except as exemplars, because as noted, these are essentially calculable from
the values of the explicit attributes.

Examples of EXPRESS schemas can also be displayed, as well as individual objects.

The EXPRESS-T MODEL construct is provided to enable the display of multiple schemas. Typ-
ically, a MODEL would be used when two or more EXPRESS schemas interact with each other.
Note that EXPRESS itself does not support such a construct.

F.2 Abstract test cases

The EXPRESS-I TEST_CASE construct is provided to assist in the formal specification of test cases
against the implementation of EXPRESS defined constructs. EXPRESS itself does not provide
an equivalent construct.

For a test case, a base set of EXPRESS-I objects must be defined which will be those objects,
and their supporting data, to be tested. The values of these objects may be in the form of
parameters, whose formal definition are given in an enclosing CONTEXT. A series of test cases
may then be defined on the CONTEXT, by providing actual parameter values. Thus, a single
“parameterized” context may support many different tests. The test case documentation will
also have to include the test purposes and expected results.

97

ISO/CD 10303-12

F.3 Object bases

Here, we assume the availabilty of some object base that stores objects according to EXPRESS
defined schema(s). That is, the object base has the capability of maintaining a partitioning
of the objects according to the EXPRESS schemas in which their definitions are declared. The
design and implementation of such an object base is left as an exercise for the reader.

F.3.1 Input

Given an object base, EXPRESS-I could be used as one means of inputting objects into the
object base. This process could be either a batch process, where a previously prepared EX-
PRESS-T file was read into the object processor, or it could be an interactive process, where the
user incrementally added EXPRESS-T objects.

Depending on the sophistication of the object base, the user may or may not need to explicitly
provide values for derived and inverse attributes.

F.3.2 Output

Given a populated object base, EXPRESS-I could be used as a data output language for displaying
some or all of the contents of the object base to a human reader.

Depending on the sophistication of the object base, the displayed entity objects may or may not
include values for derived and inverse attributes. Note, though, that at least the role names of
these attributes are required.

The EXPRESS-T MODEL construct is designed for the display of the population of an object base.

F.3.3 Code testing

Ideally, an implementation of an object base should provide functionality to evaluate all the
constraints on the EXPRESS entities and types that may occur as objects or values within the
object base. For instance, an EXPRESS schema may contain an ENTITY definition that includes
a derived attribute and a constraint on the derived value. An object base should be able to both
evaluate the derived attribute and also reject any object of that ENTITY class whose attribute
values do not satisfy the constraints. This requires code. EXPRESS-T could be used as data
input for testing such code.

Other code examples include:

— Determination of the values of inverse attributes.
— Checking unigeness constraints across an object population.

— Code to implement EXPRESS defined RULEs.

Note that these types of functions are also required for physical file test systems and other forms
of exchange data processors.

98

ISO/CD 10303-12

F.4 Non-EXPRESS data examples

As EXPRESS-I entity instances are in the form of named tuples, it may also be used to display
objects or records from languages other than EXPRESS. For example, instances of C structs
or the state of objects representing instances of classes from Object Oriented languages such as
C++ or Eiffel. Similarly for languages that support Frames.

EXAMPLE 67 — A C language struct may be defined as:

struct point {
int x;
int y;

s

An EXPRESS-I instance of this struct could appear as:

pl = point{x -> 10;
y —> 20;};

The language may be used to represent tabular data from relational databases, where the entity
name is equivalent to a table name, and each instance is a (identified) line in the table, or network
or Object Oriented type databases. In another vein it could be used as a file format-independent
representation for IGES data.

EXAMPLE 68 — A table in a relational database may be defined by the following SQL:

CREATE TABLE PART
(ID CHAR(6) NOT NULL;
PNAME CHAR(20) NOT NULL;
COLOR CHAR(8) NOT NULL;
WEIGHT SMALLINT NOT NULL;
CITY CHAR(15) NOT NULL;
PRIMARY KEY (ID) ;

Instances of two of the rows from a populated PART table could be represented by EXPRESS-I as:

PART{ID -> ’p33’;
PNAME -> °’Nut’;
COLOR -> ’Red’;
WEIGHT -> 12;
CITY —> ’Paris’; 7;
PART{ID -> ’p8’;
PNAME -> ’Washer’;
COLOR -> ’Green’;
WEIGHT -> 4;
CITY -> ’Rome’; 7;

part_rowl

part_row2

An example of a completely different usage is given by Godwin et al [3] who have proposed
EXPRESS-I as being the formal meta language for the Semantic Unification Meta Model [4],
which in turn is based on predicate logic.

99

ISO/CD 10303-12

Annex G

(informative)

Bibliography

1. ISO TR 9007; “Information processing systems - Concepts and terminology for the conceptual
schema and information base”, 1987.

2. WIRTH, N.; “What can we do about the unnecessary diversily of notation for syntactic
definitions?”, Communications of the ACM, November 1977, vol 20, no. 11, p. 822.

3. GODWIN, AN., GIANNASI, F. and TAHZIB, S.; “An ezample using the SUMM with FX-
PRESS and relational models”, in WILSON, P.R. (editor) FUG’94: 4th Annual EXPRESS User
Group International Conference, Greenville, SC, 13-14 October, 1994.

4. FULTON, J.A. et al; “Technical report on the Semantic Unification Meta-Model: Volume

1 — Semantic unification of static models”, ISO TC184/SC4 WG3 Document N175, October
1992.

100

ISO/CD 10303-12

Index

abstract (reserved Word) ... 59
aggregate (reserved WOTd)o.iuiuiu it e vi, 27, 48
alias (reserved WOrd) ... oo 37
and (reserved WOTd) ... 58
andor (reserved WOTd)i i 58
array (reserved WOrd)o.ioii i 45, 48
bag (reserved WOrd) ... i 45, 48
binary (reserved WOrd)o 47
boolean (reserved Word) 47
call (reserved WOTd)o 33
const-e (COMSTAIL) ...t 15
constant (reserved word) ... 24,45, 51
context (reserved Word) 26, 29, 33, 39, 54-56, 98
criteria (reserved WOTd) i 30
end-context (reserved WOrd) ... 39
end-criteria (reserved Word) ... 30
end-model (reserved WOTd) o 41
end-notes (reserved WOrd) ... 31
end-purpose (reserved WOTd) i 30
end-realization (reserved wWord) i 31
end-references (reserved Word) i 30
end-schema-data (reserved Word)ot 42
end-test-case (reserved WOrd) 43
entity (reserved word) vi, 12, 20-21, 45, 51-52, 58-59, 99
enumeration (reserved word) i 12-13, 19, 45, 49-50, 56, 98
false (COMSTANL) . .oou i 14-15
function (reserved WOTd) ... 45
generic (reserved WOTd)oiui i 27
import (reserved WOTd) i 33
integer (reserved WOTd) i 47, 60
list (reserved WOrd) ... 45, 48
logical (reserved WOrd) ... i 47
model (reserved Word) ... 25, 41, 54-56, 98-99
NOTATION .. 89
notes (reserved WOTd) ... i 31
number (reserved WOrd) 47, 60
objective (reserved WOTd) i 29
oneof (reserved WOrd) 58
optional (reserved WOrd) 48, 53
parameter (reserved WOTd)t 27
PL{COMSTAIL) Lottt ettt e 15
procedure (reserved WOTd) i 45
purpose (reserved WOId)ot 30
query (reserved WOTA) ...t 42

101

ISO/CD 10303-12

real (reserved WOId) ... o o 47, 60
realization (reserved word) 31
reference (reserved WOrd) ... 45-46
references (reserved WOTd) oo 30
repeat (reserved WOTd)ttt e 42
rule (reserved WOrd) ... 37,45, 99
schema (reserved word)t vi, 2526, 29, 32, 37, 44-45, 91
schema-data (reserved word) i 23, 42
&0y £ 1P 34
select (reserved word) 13, 19, 45, 49-50, 56, 98
set (reserved WOId)o.iii i 45, 48
string (reserved WOTd) ..o 47
subof (reserved Word) ... 23
subtype (reserved Word) ... vi, 23, 51-52, 57-59
supertype (reserved Word)i i e vi, 23, 51-52, 57-59
supof (reserved WOrd) ... i 23
test-case (reserved WOTd)i.i i e 28-29, 33, 43, 98
true (COMStant) 14-15
type (reserved WOTd)iu i e 13,18, 45, 98
unique (reserved WOId) i 52
UnKNOWD (COMSTAIL) ..ot 15
use (reserved WOId)ioii i 32, 45-47
using (reserved WOTd) ... 32
VST DIy o e e 34, 36
where (reserved WOrd) ... 52
with (reserved word) 32-33

102

